Two-Factor Between-Participants Designs

PSYC214: Statistics For Group Comparisons

Mark Hurlstone
Lancaster University
Week 7

Learning Objectives

- How to calculate F ratios for two-factor between-participants designs
- How to calculate simple main effects, if the interaction is significant

Analysis a 2

Two-Factor Between-Participants Designs

- The simplest two-factor between-participants design is a 2×2 factorial design:
- there are two factors, each with two levels, yielding a total of four cells or conditions
- each participant contributes a single score to one condition only
- We can ask whether either of the main effects is significant
- We can also ask whether the interaction is significant

```
2 < 2 Factorial
```


A Typical Between-Participants 2×2 Design

B_{1}	$\begin{aligned} & \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \\ & \mathrm{P}_{4} \mathrm{P}_{5} \mathrm{P}_{6} \\ & \mathrm{P}_{7} \mathrm{P}_{8} \mathrm{P}_{9} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{10} \mathrm{P}_{11} \mathrm{P}_{12} \\ & \mathrm{P}_{13} \mathrm{P}_{14} \mathrm{P}_{15} \\ & \mathrm{P}_{16} \mathrm{P}_{17} \mathrm{P}_{18} \end{aligned}$	Mean B_{1}
B_{2}	$\begin{aligned} & \mathrm{P}_{19} \mathrm{P}_{20} \mathrm{P}_{21} \\ & \mathrm{P}_{22} \mathrm{P}_{23} \mathrm{P}_{24} \\ & \mathrm{P}_{25} \mathrm{P}_{26} \mathrm{P}_{27} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{28} \mathrm{P}_{29} \mathrm{P}_{30} \\ & \mathrm{P}_{31} \mathrm{P}_{32} \mathrm{P}_{33} \\ & \mathrm{P}_{34} \mathrm{P}_{35} \mathrm{P}_{36} \end{aligned}$	Mean B_{2}

typical between-participants 2×2 design. Each participant only performs one of the four possible combinations of conditions

Main Effects

$\mathbf{A}_{\mathbf{1}}$	\boldsymbol{A}_{2}
$\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}$	
$\mathrm{P}_{4} \mathrm{P}_{5} \mathrm{P}_{6}$	
$\mathrm{P}_{7} \mathrm{P}_{8} \mathrm{P}_{9}$	
$\mathrm{P}_{19} \mathrm{P}_{20} \mathrm{P}_{21}$	
$\mathrm{P}_{22} \mathrm{P}_{23} \mathrm{P}_{24}$	
$\mathrm{P}_{25} \mathrm{P}_{26} \mathrm{P}_{27}$	
Mean A_{1}	$\mathrm{P}_{10} \mathrm{P}_{11} \mathrm{P}_{12}$ $\mathrm{P}_{13} \mathrm{P}_{14} \mathrm{P}_{15}$ $\mathrm{P}_{16} \mathrm{P}_{17} \mathrm{P}_{18}$ $\mathrm{P}_{28} \mathrm{P}_{29} \mathrm{P}_{30}$ $\mathrm{P}_{31} \mathrm{P}_{32} \mathrm{P}_{33}$ $\mathrm{P}_{34} \mathrm{P}_{35} \mathrm{P}_{36}$
Mean A_{2}	

Main effect of A : Is the difference between means of A_{1} and A_{2} significant (ignoring factor B)?

$$
\begin{aligned}
& \mathbf{B 1}_{1} \begin{array}{ll}
\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} & \mathrm{P}_{10} \mathrm{P}_{11} \mathrm{P}_{12} \\
\mathrm{P}_{4} \mathrm{P}_{5} \mathrm{P}_{6} & \mathrm{P}_{13} \mathrm{P}_{14} \mathrm{P}_{15} \\
\mathrm{P}_{7} \mathrm{P}_{8} \mathrm{P}_{9} & \mathrm{P}_{16} \mathrm{P}_{17} \mathrm{P}_{18}
\end{array} \quad \begin{array}{c}
\text { Mean } \\
\mathrm{B}_{1}
\end{array} \\
& \mathbf{B 2}_{2} \begin{array}{lll}
\mathrm{P}_{19} \mathrm{P}_{20} \mathrm{P}_{21} & \mathrm{P}_{28} \mathrm{P}_{29} \mathrm{P}_{30} \\
\mathrm{P}_{22} \mathrm{P}_{23} \mathrm{P}_{24} & \mathrm{P}_{31} \mathrm{P}_{32} \mathrm{P}_{33} \\
\mathrm{P}_{25} \mathrm{P}_{26} \mathrm{P}_{27} & \mathrm{P}_{34} \mathrm{P}_{35} \mathrm{P}_{36} & \text { Mean } \\
\mathrm{B}_{2}
\end{array}
\end{aligned}
$$

Main effect of B : Is the difference between means of B_{1} and B_{2} significant (ignoring factor A)?
2×2 Factorial Design

Main Effects
Simple Main Effects
Analysis a 2 2 Design

Basic Ratios
SS WITHIN, BETWEEN, $\&$ TOTAL
SS Main Etecles SS interacion
\qquad

Simple Main Effects of Factor A

B_{1}

Mean $A_{1} \quad$ Mean A_{2}
（at B_{1} ）
（at B_{1} ）

B2 $\begin{aligned} & \mathrm{P}_{19} \mathrm{P}_{20} \mathrm{P}_{21} \\ & \mathrm{P}_{22} \mathrm{P}_{23} \mathrm{P}_{24} \\ & \mathrm{P}_{25} \mathrm{P}_{26} \mathrm{P}_{27}\end{aligned}$
Mean A_{1}
（at B_{2} ）

$$
\begin{gathered}
\hline \mathrm{P}_{28} \mathrm{P}_{29} \mathrm{P}_{30} \\
\mathrm{P}_{31} \mathrm{P}_{32} \mathrm{P}_{33} \\
\mathrm{P}_{34} \mathrm{P}_{35} \mathrm{P}_{36} \\
\hline \text { Mean } \mathrm{A}_{2} \\
\text { (at } \mathrm{B}_{2} \text {) }
\end{gathered}
$$

Simple main effect of A at B_{1} ： Is the difference between means of A_{1} and A_{2} significant at B_{1} of factor B ？

Simple main effect of A at B_{2} ：
Is the difference between means of A_{1} and A_{2} significant at B_{2} of factor B ？

Basic Ralios
SS WITHIN，BETWEEN，\＆ TOTAL
SS Main Ellecls
ss interacion

ANoVA Table
Simple Main Effects

Simple Main Effects of Factor B

$$
\begin{aligned}
& \mathbf{A}_{1} \\
& \text { B1 }^{\begin{array}{l}
P_{1} P_{2} P_{3} \\
P_{4} P_{5} P_{6} \\
P_{7} P_{8} P_{9}
\end{array}} \begin{array}{c}
\text { Mean } B_{1} \\
\text { (at } \left.A_{1}\right)
\end{array} \\
& B_{2} \begin{array}{|c|c}
\begin{array}{l}
\mathrm{P}_{19} \mathrm{P}_{20} \mathrm{P}_{21} \\
\mathrm{P}_{22} \mathrm{P}_{23} \mathrm{P}_{24} \\
\mathrm{P}_{25} \mathrm{P}_{26} \mathrm{P}_{27} \\
\hline
\end{array} & \begin{array}{c}
\text { Mean } \mathrm{B}_{2} \\
\text { (at } \left.\mathrm{A}_{1}\right)
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

Simple main effect of B at A_{1} : Is the difference between means of B_{1} and B_{2} significant at A_{1} of factor A ?

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{P}_{10} \mathrm{P}_{11} \mathrm{P}_{12} \\
\mathrm{P}_{13} \mathrm{P}_{14} \mathrm{P}_{15} \\
\mathrm{P}_{16} \mathrm{P}_{17} \mathrm{P}_{18}
\end{array} \quad \text { Mean } \mathrm{B}_{1} \\
& \text { (at } \left.\mathrm{A}_{2}\right)
\end{aligned}
$$

$\mathrm{P}_{28} \mathrm{P}_{29} \mathrm{P}_{30}$	Mean B_{2}
$\mathrm{P}_{31} \mathrm{P}_{32} \mathrm{P}_{33}$	$\left(\right.$ at $\left.\mathrm{A}_{2}\right)$
$\mathrm{P}_{34} \mathrm{P}_{35} \mathrm{P}_{36}$	

Simple main effect of B at $A_{\mathbf{2}}$: Is the difference between means of B_{1} and B_{2} significant at A_{2} of factor A ?

Simple Main Effects

－There are two ways a pair of simple main effects may differ in their trends：
（1）one of a pair has a significant difference but not the other．For example， the mean of A_{1} differs from the mean of A_{2} at level B_{2} but not at level B_{1}
（2）both simple main effects are significant，but in the opposite direction．For example，the mean of A_{1} is greater than the mean of A_{2} at level B_{1} ，but the pattern is reversed at level B_{2}

Simple Main Effects

Factor A
Factor A

- Level (A_{1})
- Level (A_{1})
- Level $\left(\mathrm{A}_{2}\right)$
- Level $\left(\mathrm{A}_{2}\right)$
m.hurlstone@

Analysis a 2×2 Between-Participants Factorial Design

- The first stage of analysis seeks to uncover which of the two main effects and interactions are significant
- If the interaction is significant, then in a second stage we perform a simple main effects analysis
- Although a second factor has been added, the F ratio remains the same:

$$
F=\frac{\text { treatment effects }+ \text { experimental error }}{\text { experimental error }}
$$

- As this is a between-participants design:

$$
F=\frac{\text { between-group variance }}{\text { within-group variance }}
$$

Analysis a $2 \times$ 2 Design

Basic Raios
SS within, between TOTAL
SS Man Elicocs ss inteacion
${ }_{\text {dF }}^{\text {DF }}$
2×2 Factorial Design
Sirgewre
Man filects
Simple Main Elfects

lancaster.ac.uk

Smple Main Eirects Tab,

Analysis a 2×2 Between-Participants Factorial Design

- The main difference is that there are now three F ratios, one for each of the three effects

Dala
Basic Ralios
SS WTHIN. BETWEEN. 8 TOTAL
SS Main Ellecis ss miteracion ANoVA Table

Simple Main Effects

Hypothetical Data For COVID-19 Study

	Factor A: Fear		
Factor $B:$ Level A_{1} Level A_{2} Efficacy no fear appeal fear appeal	P_{1} no efficacy message	P_{1}	5
	P_{2}	4	P_{13}

Hypothetical Data For COVID-19 Study

Factor A: Fear

		Level A_{1} no fear appeal	Level A_{2} fear appeal	
		Overall		
Factor $B:$	Level B_{1} no efficacy message	5.00	5.00	5.00
Efficacy	Level B_{2} efficacy message	5.17	8.17	6.67
Overall	5.08	6.58	5.83	

Main Effects
Simple Main Elfecis
Analysis a 2 2 Design

Data
Basic Ratios
SS WITHIN, BETWEEN, ε TOTAL
SS Main Effects
SS Interaction DF
ANOVA Table
Simple Main Effects
Between-Group SS \& DF Simple Main Effects Tabl

Notation

$$
\begin{gathered}
S S_{B E T W E E N}=\frac{\left(\sum A_{1}\right)^{2}+\left(\sum A_{2}\right)^{2}}{N_{A}}-\frac{\left(\sum Y\right)^{2}}{N} \\
S S_{W I T H I N}=\sum Y^{2}-\frac{\left(\sum A_{1}\right)^{2}+\left(\sum A_{2}\right)^{2}}{N_{A}} \\
S S_{T O T A L}=\sum Y^{2}-\frac{\left(\sum Y\right)^{2}}{N}
\end{gathered}
$$

Notation

$$
\begin{gathered}
S S_{\text {BETWEEN }}=\frac{\left(\sum A_{1}\right)^{2}+\left(\sum A_{2}\right)^{2}}{N_{A}}-\frac{\left(\sum Y\right)^{2}}{N} \\
S S_{W I T H I N}=\sum Y^{2}-\frac{\left(\sum A_{1}\right)^{2}+\left(\sum A_{2}\right)^{2}}{N_{A}} \\
S S_{\text {TOTAL }}=\sum Y^{2}-\frac{\left(\sum Y\right)^{2}}{N}
\end{gathered}
$$

Man Eliects
Simple Main Eliecis
Analysis a 2 2 Design

Basic Ratios
S WITHIN, BETWEEN, \& TOTAL
SS Main Effects
SS Interaction
\qquad
Simple Main Effects

Between-Group SS \& DF

Notation

$$
\begin{gathered}
S S_{\text {BETWEEN }}=\frac{\left(\sum A_{1}\right)^{2}+\left(\sum A_{2}\right)^{2}}{N_{A}}-\frac{\left(\sum Y\right)^{2}}{N} \\
S S_{W I T H I N}=\sum Y^{2}-\frac{\left(\sum A_{1}\right)^{2}+\left(\sum A_{2}\right)^{2}}{N_{A}} \\
S S_{\text {TOTAL }}=\sum Y^{2}-\frac{\left(\sum Y\right)^{2}}{N}
\end{gathered}
$$

PSYC214:
Statistics for Group Comparisons
m.hurlstone@ lancaster.ac.uk

Design
Stucture
Main Etiects
Simple Man Eliecis
Analysis a 2 2 Design

Basic Ratios
SS WITHIN, BETWEEN, \& TOTAL

SS Main Effects
SS Interaction
ANOVA Table
Simple Main
Effects
Between-Group SS \& DF Simple Main Effects Table

Notation

$$
\begin{gathered}
S S_{B E T W E E N}=\frac{\left(\sum A_{1}\right)^{2}+\left(\sum A_{2}\right)^{2}}{N_{A}}-\frac{\left(\sum Y\right)^{2}}{N} \\
S S_{\text {WITHIN }}=\sum Y^{2}-\frac{\left(\sum A_{1}\right)^{2}+\left(\sum A_{2}\right)^{2}}{N_{A}} \\
S S_{\text {TOTAL }}=\sum Y^{2}-\frac{\left(\sum Y\right)^{2}}{N}
\end{gathered}
$$

PSYC214:
Statistics for Group Comparisons
m.hurlstone@ lancaster.ac.uk

Design
Structure
Main Eliects
Simple Man Eliecis
Analysis a 2
2 Design

Basic Ratios
SS WITHIN, BETWEEN, \& TOTAL
SS Main Effects
SS Interaction

Simple Main
Effects
Between-Group SS \& DF
Simple Main Effects Table

Notation

$$
\frac{\left(\sum Y\right)^{2}}{N} \text { is } \frac{(\text { grand total })^{2}}{\text { the number of scores that make up the grand total }}
$$

$$
\frac{\left(\sum A_{1}\right)^{2}+\left(\sum A_{2}\right)^{2}}{N_{A}} \text { is } \frac{\left(\text { level total of } A_{1}\right)^{2}+\left(\text { level total of } A_{2}\right)^{2}}{\text { the number of scores that make up each level }}
$$

$$
\sum Y^{2} \text { is } \frac{\left(\text { score }_{1}\right)^{2}+\left(\text { score }_{2}\right)^{2}+\left(\text { score }_{3}\right)^{2}(\text { and so on })}{1 \text { (only one number makes up each individual score })}
$$

Siructure
Main Elfects
Simple Main Effects
Analysis a 2 2 Design

Basic Ratios
SS WITHIN，BETWEEN，c TOTAL
SS Main Effects
SS interaction
DF
ANOVA Table
Simple Main Effects
Beween－Group SS \＆DF Simple Main Elfectis Table

Basic Ratios

$[T]$: basic ratio of the grand total, $\frac{\left(\sum Y\right)^{2}}{N}$
$[A]$: basic ratio of the level totals, $\frac{\left(\sum A_{1}\right)^{2}+\left(\sum A_{2}\right)^{2}}{N_{A}}$
$[Y]$: basic ratio of the individual scores, $\sum Y^{2}$

Basic Ratios

- To compute the components of a factorial between-participants ANOVA, two additional ratios are required
- $[B]$ is the basic ratio of the level totals of factor B. If there are two levels in factor B, then $[B]=$
$\frac{\left(\text { level total of } B_{1}\right)^{2}+\left(\text { level total of } B_{2}\right)^{2}}{\text { the number of scores that make up each level }}=\frac{\left(\sum B_{1}\right)^{2}+\left(\sum B_{2}\right)^{2}}{N_{B}}$
2×2 Factorial Design
Stucure
Main Elfecis
Simpla Main Elfects

Analysis a 2 2 Design

Basic Ratios
SS WIT
SS Main Effects
SS interaction
DF ${ }_{\text {ANOVA }}$
Simple Main Effects

Basic Ratios

－$[A B]$ is the basic ratio of the cell totals，where a cell total is the total of all the scores in any one of the cells．For a 2×2 design，$[A B]=$

$$
\left(\begin{array}{l}
\text { cell total of } \left.A_{1} B_{1}\right)^{2}+\left(\text { cell total of } A_{1} B_{2}\right)^{2}+\left(\text { cell total of } A_{2} B_{1}\right)^{2}+\left(\text { cell total of } A_{2} B_{2}\right)^{2} \\
\hline
\end{array}\right.
$$

the number of scores in each cell

$$
=\left(\sum A_{1} B_{1}\right)^{2}+\left(\sum A_{1} B_{2}\right)^{2}+\left(\sum A_{2} B_{1}\right)^{2}+\left(\sum A_{2} B_{2}\right)^{2}
$$

2×2 Factorial Design
strucure
Main Elicats
Simple Wan Elifocis
Analysis a 2 2 Design

Basic Ratios

TOTAL
SS Main Effects
Sineraction
ANOVA TEBL
Simple Main Effects

Calculating Basic Ratios For The Hypothetical Data

- Within-group variance is a measure of the extent to which people within each of the groups behave differently, despite being treated alike
- For a 2×2 between-participants design, people have been treated exactly alike only within each of the four cells
- To calculate the error term, we compute and combine the Sums of Squares and degrees of freedom using the smallest unit of identically treated participants-the four cells
- This gives a single measure of experimental error that can be used for calculating the Fs for all the effects

Calculating The Sum of Squares For The Error Term

- We calculate the error term, $S S_{\text {WITHin }}$, as follows:

$$
S S_{\text {WITHIN }}=[Y]-[A B] \quad S S_{\text {WITHIN }} \text { will be designated } S S_{S / A B}
$$

- This produces the error term that will be used to calculate all the Fs
- This is the overall measure of the extent to which participants behaved differently despite being treated alike

Between-Group Sum of Squares

- We also need to calculate the total between-group Sum of Squares for the four cells
- This is a measure of the variability due to the various experimental treatments
- It is a measure of how distant each of the four cell means is from the grand mean
- It tells us the overall extent to which the treatments caused scores to differ
- The between-group Sum of Squares is calculated as:

$$
S S_{B E T W E E N}=[A B]-[T] \quad S S_{B E T W E E N} \text { will be designated } S S_{A B}
$$

2×2 Factorial Design

Man Eliects
simple Nain Eliecocs
Analysis a 2 2 Design

SS WITHIN, BETWEEN, \& TOTAL
SS Main Effects SS Interaction
ANOVA Table

Total Sum of Squares

－We also need to calculate the total Sum of Squares
－This is a measure of total variability for the entire data set irrespective of experimental treatments
－It is calculated as：

$$
S S_{T O T A L}=[Y]-[T]
$$

Calculating The Sums of Squares For The Two Main Effects

- Two between-group sums of squares are required, one for each of the main effects
- Each main effect is treated as being completely independent from the other
- e.g., when calculating the main effect of factor A , the fact participants were treated in different ways at factor B is ignored
- The Sums of Squares for the two main effects are calculated as:
for the between-group sums of squares for factor $A, S S_{A}=[A]-[T]$ for the between-group sums of squares for factor $B, S S_{B}=[B]-[T]$
2×2 Factorial Design
Sircuare
Man ilicats
Simple Main Effects
Analysis a 2 2 Design

Basic Patios
SS WITHIN, BETWEEN,
SS Main Effects

Calculating The Sums of Squares For The Two Main Effects

- To test the significance of the interaction, a final Sums of Squares is required
- This is calculated as:

$$
S S_{\text {INTERACTION }}, S S_{A \times B}=[A B]-[A]-[B]+[T]
$$

- This is the variability in thee group means not accounted for by the main effects
- It is the variability caused by the interaction between factor A and factor B

Calculating The Sums of Squares Discussed So Far

Within－group Sum of Squares：$S S_{S / A B}=[Y]-[A B]$

$$
=910-860.3333=49.67
$$

Total between－group Sum of Squares：$S S_{A B}=[A B]-[T]$

$$
=860.3333-816.6667=43.67
$$

Total Sum of Squares：$S S_{\text {TOTAL }}=[Y]-[T]$

$$
=910-816.6667=93.33
$$

Calculating The Sums of Squares Discussed So Far

Between－group Sum of Squares for factor A：$S S_{A}=[A]-[T]$

$$
=830.1667-816.667=13.50
$$

Between－group Sum of Squares for factor B：$S S_{B}=[B]-[T]$

$$
=833.3333-816.6667=16.67
$$

Sum of Squares for interaction：$S S_{A \times B}=[A B]-[A]-[B]+[T]$

$$
=860.3333-830.1667-833.3333+816.6667=13.50
$$

Degrees of Freedom

－For the main effects：

$$
\begin{array}{r}
d f_{A}=(\text { number of levels in factor } A-1)=(a-1) \\
(a \text { is the number of levels in factor } A)
\end{array} \begin{array}{r}
d f_{B}=(\text { number of levels in factor } B-1)=(b-1) \\
(b \text { is the number of levels in factor } B)
\end{array}
$$

－For the interaction：

$$
d f_{A \times B}=d f_{A} \times d f_{B}=(a-1)(b-1)
$$

Simple Main Effects
Analysis a 2 2 Design Data Basic Ratios SS WITHIN，BETWEEN，
TOTAL

Degrees of Freedom

－For the within－group variance（the error term）：

$$
\begin{array}{r}
d f_{S / A B}=[(\text { number of cells }) \times(\text { number of scores in cell }-1)] \\
=a b(s-1)
\end{array}
$$

（ s is the number of scores in a cell）
－For the total degrees of freedom：

$$
d f_{\text {TOTAL }}=(\text { total number of scores }-1)=(a b s)-1
$$

Degrees of Freedom

- The various degrees of freedom should add up so that:

$$
d f_{T O T A L}=d f_{A}+d f_{B}+d f_{A \times B}+d f_{S / A B}
$$

Calculating The Degrees of Freedom Discussed So Far

$$
\begin{gathered}
d f_{A}=(a-1)=2-1=1 \text { (factor } A \text { has two levels) } \\
d f_{B}=(b-1)=2-1=1 \text { (factor } B \text { has two levels) } \\
d f_{A \times B}=(a-1)(b-1)=1 \times 1=1 \\
d f_{S / A B}=a b(s-1)=2 \times 2(6-1)=20(\text { six participants per cell }) \\
d f_{T O T A L}=(a b s)-1=(2 \times 2 \times 6)-1=23
\end{gathered}
$$

Summary ANOVA Table By Components

Source	Sum of Squares	Degrees of freedom	Mean Square	F	p
A	$[A]-[T]$	$(a-1)$	$\frac{[A]-[T]}{(a-I)}$	Mean Square ${ }_{A}$ Mean Square ${ }_{S A B}$	tables
B	$[B]-[T]$	$(b-1)$	$\frac{[B]-[T]}{(b-I)}$	$\frac{\text { Mean Square }_{B}}{\text { Mean Square }_{S A B}}$	tables
$A \times B$	$\begin{aligned} & {[A B]-[A]} \\ & -[B]+[T] \end{aligned}$	$(a-1)(b-1)$	$\frac{[A B]-[A]-[B]+[T]}{(a-I)(b-I)}$	$\frac{\text { Mean Square }_{A \times B}}{\text { Mean Square }}$	tables
S/AB	$[Y]-[A B]$	$a b(s-1)$	$\frac{[Y]-[A B]}{a b(s-I)}$		
TOTAL	$[Y]-[T]$	(abs) - I			

ANOVA Table For Hypothetical Data

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	P
A	13.50	1			
B	16.67	1			
$A \times B$	13.50	1			
S/AB	49.67	20			
TOTAL	93.33	23			

Simple Main Effecis
Analysis a 2 2 Design

Basic Ratios
SS WITHIN, BETWEEN, \& TOTAL
SS Main Effects
SS interaction

ANOVA Table
Simple Main Effects
Between-Group SS \& DF Simple Main Effects Table

ANOVA Table For Hypothetical Data

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	P
A	13.50	1	13.50		
B	16.67	1	16.67		
$A \times B$	13.50	1	13.50		
S/AB	49.67	20	2.48		
TOTAL	93.33	23	4.06		

ANOVA Table For Hypothetical Data

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	P
A	13.50	1	13.50	5.44	
B	16.67	1	16.67	6.72	
$A \times B$	13.50	1	13.50	5.44	
S／AB	49.67	20	2.48		
TOTAL	93.33	23	4.06		

Simple Main Effects
Analysis a 2 2 Design

Basic Ratios SS WITHIN，BETWEEN，\＆ TOTAL
SS Main Effects
SS Interaction

ANOVA Table
Simple Main
Effects
Between－Group SS \＆DF
Simple Main Effects Table

ANOVA Table For Hypothetical Data

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	P
A	13.50	1	13.50	5.44	$<.05$
B	16.67	1	16.67	6.72	$<.05$
$A \times B$	13.50	1	13.50	5.44	$<.05$
S/AB	49.67	20	2.48		
TOTAL	93.33	23	4.06		

ANOVA Table For Hypothetical Data

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	P
A	13.50	1	13.50	5.44	$<.05$
B	16.67	1	16.67	6.72	$<.05$
$A \times B$	13.50	1	13.50	5.44	$<.05$
S/AB	49.67	20	2.48		
TOTAL	93.33	23	4.06		

Interaction Plot

m.huristone@ lancaster.ac.uk
2×2 Factorial Design
Strowne
Main Elicats
simple Main Elicacis
Analysis a 2
2 Design
Dala
Basie Ralios
SS WTHIN , BETWEEN, \& ToTAL
SS Man Elicecls
ss meracion
DF
ANOVA Table
Simple Main Effects
Beween-Gioup Ss \& DF
simple Mañ Eliectis rable

Simple Main Effects

- If the interaction is significant, then we interpret it by analysing the simple main effects
- In a 2×2 design, these are simply pairwise comparisons, analogous to using four t-tests
- This involves calculating the between-group variance for each simple main effect, before dividing each variance by the error term $(S / A B)$ from the original ANOVA
- Thus, the significance of the simple main effects is evaluated using the
2×2 Factorial Design
Sirucure
Main Elfects
Simple Main Effects

Analysis a 2 2 Design

Basic Ralios
SS WITHIN, BETWEEN TOTAL
SS Main Eliects SS Interaction DF

Simple Main Effects same error term used to test the significance of the main effects and interaction

Simple Main Effects

Main effect of A: To find out whether the main effect of A is significant, calculate the between-group variance of the means of A_{1} and A_{2} in relation to the grand mean (ignoring factor B). The bigger thee variance, the bigger the difference between thee means and the more likely that the difference is significant.

2×2 Factorial Design

Main Elifects
simple Man Elicacis
Analysis a 2
2 Design
Basic Railos
SS WTHIN, BETWEEN, \& total
SS Manin Elicde
ss miteacaion
anova table
Simple Main
Effects

Simple Main Effects

B_{1}	$\begin{array}{r} \boldsymbol{A}_{1} \\ \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \\ \mathrm{P}_{4} \mathrm{P}_{5} \mathrm{P}_{6} \\ \mathrm{P}_{7} \mathrm{P}_{8} \mathrm{P}_{9} \\ \hline \text { Mean } \mathrm{A}_{1} \\ \text { (at } \mathrm{B}_{1} \text {) } \\ \text { Rea } \\ \text { Mea } \\ \text { the } \end{array}$	$\begin{aligned} & \boldsymbol{A}_{2} \\ & \mathrm{P}_{10} \mathrm{P}_{11} \mathrm{P}_{12} \\ & \mathrm{P}_{13} \mathrm{P}_{14} \mathrm{P}_{15} \\ & \mathrm{P}_{16} \mathrm{P}_{17} \mathrm{P}_{18} \\ & \begin{array}{c} \text { Mean } \mathrm{A}_{2} \\ \text { (at } \mathrm{B}_{1} \text {) } \end{array} \\ & \text { ill of } \\ & \text { ores } \end{aligned}$	Simple main effect of A at B_{1} : To find out whether this simple main effect is significant, calculate the between-group variance for means A_{1} and A_{2} in relation to the overall mean of all the B_{1} scores. The bigger the variance, the bigger the difference between the means and the more likely that the difference is significant.
B_{2}	$\begin{gathered} \mathrm{P}_{19} \mathrm{P}_{20} \mathrm{P}_{21} \\ \mathrm{P}_{22} \mathrm{P}_{23} \mathrm{P}_{24} \\ \mathrm{P}_{25} \mathrm{P}_{26} \mathrm{P}_{27} \\ \hline \begin{array}{c} \text { Mean } \mathrm{A}_{1} \\ \text { (at } \mathrm{B}_{2} \text {) } \end{array} \end{gathered}$	$\begin{gathered} \mathrm{P}_{28} \mathrm{P}_{29} \mathrm{P}_{30} \\ \mathrm{P}_{31} \mathrm{P}_{32} \mathrm{P}_{33} \\ \mathrm{P}_{34} \mathrm{P}_{35} \mathrm{P}_{36} \\ \hline \text { Mean } \mathrm{A}_{2} \\ \text { (at } \mathrm{B}_{2} \text {) } \end{gathered}$	Ignore B_{2} when testing the significance of the simple main effect of A at B_{1}

2×2 Factorial Design
Structure
Main Etects
Simple Main Eliecis
Analysis a 2 2 Design Data
Basic Railos SS within, between, \& TOTAL
SS Main Elfects
SS Interacion
DF
ANOVA Table
Simple Main
Effects
Beween-Group SS \& DF Simple Main Effects Table

Calculating Between－Group Sum of Squares

－The formula for calculating a between－group Sum of Squares is the basic ratio of the group totals of interest，minus the basic ratio of the total of these totals［ 7 ］
－For example，the formula for calculating the between－group variance for the main effect of factor A is $[A]-[T]$
－The basic ratios used to calculate the between－group variances for the simple main effects are analogous to these
2×2 Factorial Design
strucure
Man Eliects
simple Nain Eliecos
Analysis a 2 2 Design

Basic Railios
Ss within，between TOTAL
SS Man Elilects
ssinteracion
anova tede
Simple Main Effects
Between－Group SS \＆DF

Calculating Between-Group Sum of Squares

- For example:
- $\left[A_{B_{1}}\right]$ is the basic ratio of factor A, but only for the B_{1} scores: square the total for $A_{1} B_{1}$, square the total for $A_{2} B_{1}$, add the squares together and divide by the
2×2 Factorial Design

Studure
Main Eliects
Simple Main Effects
Analysis a 2 2 Design number of scores that make up each cell.

- [$T_{B_{1}}$] is the basic ratio of the total of the scores at level B_{1} of factor B : take the total of all the scores in level B_{1} and square the total, divide the square by the number of scores making up this total.
- Eight basic ratios are required to test the four simple main effects ...

Calculating Between-Group Sum of Squares

Sum of Squares between groups of factor A at level $B_{1}\left(S S_{A \text { at } B_{1}}\right)$:

$$
\left[A_{B_{1}}\right]-\left[T_{B_{1}}\right]
$$

Sum of Squares between groups of factor A at level $B_{2}\left(S S_{A \text { at } B_{2}}\right)$:

$$
\left[A_{B_{2}}\right]-\left[T_{B_{2}}\right]
$$

Sum of Squares between groups of factor B at level $A_{1}\left(S S_{B \text { at } A_{1}}\right)$:

$$
\left[B_{A_{1}}\right]-\left[T_{A_{1}}\right]
$$

2×2 Factorial Design
Structure
Main Elfectis
Simple Main Eflecis
Analysis a 2 2 Design Data
Basic Ratios
SS WITHIN, BETWEEN, ε TOTAL
SS Main Effects SS interaction SSIn
DF
ANOVA Table
Simple Main Effects

Sum of Squares between groups of factor B at level $A_{2}\left(S S_{B \text { at } A_{2}}\right)$:

$$
\left[B_{A_{2}}\right]-\left[T_{A_{2}}\right]
$$

Calculating Between－Group Degrees Of Freedom

－All degrees of freedom are equal to the number of（［number of levels in each simple main effect］）－ 1
－For the two simple main effects of A ，the degrees of freedom are given by（ $a-1$ ），where a is the number of levels in factor A
－For the two simple main effects of B ，the degrees of freedom are given by（b－1），where b is the number of levels in factor B

Calculating Between－Group Sum of Squares

		Factor A：Fear		
		Level A_{1} no fear appeal	Level A_{2} fear appeal	
Efficacy	Level B_{1} no efficacy message	$\begin{gathered} \text { Total } A_{1} B_{1} \\ =30 \end{gathered}$	$\begin{gathered} \text { Total } A_{2} B_{1} \\ =30 \end{gathered}$	$\begin{gathered} \text { Total } B_{1}= \\ 30+30=60 \end{gathered}$
	Level B_{2} efficacy message	$\begin{gathered} \text { Total } A_{1} B_{2} \\ =31 \end{gathered}$	$\begin{gathered} \text { Total } A_{2} B_{2} \\ =49 \end{gathered}$	$\begin{gathered} \text { Total } B_{2}= \\ 31+49=80 \end{gathered}$
		$\begin{gathered} \text { Total } A_{1}= \\ 30+31=61 \end{gathered}$	$\begin{gathered} \text { Total } A_{2}= \\ 30+49=79 \end{gathered}$	

Calculating Between－Group Sum of Squares

－Fear（no fear appeal vs．fear appeal）for no efficacy message（ A at B_{1} ）

$$
\left[A_{B_{1}}\right]=\frac{30^{2}+30^{2}}{6}=300\left[T_{B_{1}}\right]=\frac{60^{2}}{12}=300\left[A_{B_{1}}\right]-\left[T_{B_{1}}\right]=0
$$

－Fear（no fear appeal vs．fear appeal）for efficacy message（ A at B_{2} ）

$$
\left[A_{B_{2}}\right]=\frac{31^{2}+49^{2}}{6}=560.33\left[T_{B_{2}}\right]=\frac{80^{2}}{12}=533.33\left[A_{B_{2}}\right]-\left[T_{B_{2}}\right]=27
$$

Analysis a 2 2 Design
Data
Basic Ratios
SS WITHIN，BETWEEN，ε
TOTAL TOTAL
SS Main Effects
SS interaction
DF
ANOVA Table
Simple Main
Effects
Between－Group SS \＆DF

Calculating Between－Group Sum of Squares

－Fear（no fear appeal vs．fear appeal）for no efficacy message（ A at B_{1} ）

$$
\left[A_{B_{1}}\right]=\frac{30^{2}+30^{2}}{6}=300\left[T_{B_{1}}\right]=\frac{60^{2}}{12}=300\left[A_{B_{1}}\right]-\left[T_{B_{1}}\right]=0
$$

－Fear（no fear appeal vs．fear appeal）for efficacy message（ A at B_{2} ）

$$
\left[A_{B_{2}}\right]=\frac{31^{2}+49^{2}}{6}=560.33\left[T_{B_{2}}\right]=\frac{80^{2}}{12}=533.33\left[A_{B_{2}}\right]-\left[T_{B_{2}}\right]=27
$$

Simple Main Elfecis
Analysis a 2 2 Design
Data
Basic Ralios
SS WITHIN，BETWEEN，\＆ TOTAL
SS Main Eflecis
SS Interacion DF
ANOVA Table
Simple Main Effects
Between－Group SS \＆DF
Simple Main Effects Table

Calculating Between－Group Sum of Squares

		Factor A：Fear		
		Level A_{1} no fear appeal	Level A_{2} fear appeal	
Efficacy	Level B_{1} no efficacy message	$\begin{gathered} \text { Total } A_{1} B_{1} \\ =30 \end{gathered}$	$\begin{gathered} \text { Total } A_{2} B_{1} \\ =30 \end{gathered}$	$\begin{gathered} \text { Total } B_{1}= \\ 30+30=60 \end{gathered}$
	Level B_{2} efficacy message	$\begin{gathered} \text { Total } A_{1} B_{2} \\ =31 \end{gathered}$	$\begin{gathered} \text { Total } A_{2} B_{2} \\ =49 \end{gathered}$	$\begin{gathered} \text { Total } B_{2}= \\ 31+49=80 \end{gathered}$
		$\begin{gathered} \text { Total } A_{1}= \\ 30+31=61 \end{gathered}$	$\begin{gathered} \text { Total } A_{2}= \\ 30+49=79 \end{gathered}$	

Calculating Between－Group Sum of Squares

－Fear（no fear appeal vs．fear appeal）for no efficacy message（ A at B_{1} ）

$$
\left[A_{B_{1}}\right]=\frac{30^{2}+30^{2}}{6}=300\left[T_{B_{1}}\right]=\frac{60^{2}}{12}=300\left[A_{B_{1}}\right]-\left[T_{B_{1}}\right]=0
$$

－Fear（no fear appeal vs．fear appeal）for efficacy message（ A at B_{2} ）

$$
\left[A_{B_{2}}\right]=\frac{31^{2}+49^{2}}{6}=560.33\left[T_{B_{2}}\right]=\frac{80^{2}}{12}=533.33\left[A_{B_{2}}\right]-\left[T_{B_{2}}\right]=27
$$

Simple Main Elfecis
Analysis a 2 2 Design
Data
Basic Ralios
SS WITHIN，BETWEEN，\＆ TOTAL
SS Main Eflecis
SS Interacion DF
ANOVA Table
Simple Main Effects
Between－Group SS \＆DF
Simple Main Effects Table

Calculating Between－Group Sum of Squares

－Fear（no fear appeal vs．fear appeal）for no efficacy message（ A at B_{1} ）

$$
\left[A_{B_{1}}\right]=\frac{30^{2}+30^{2}}{6}=300\left[T_{B_{1}}\right]=\frac{60^{2}}{12}=300\left[A_{B_{1}}\right]-\left[T_{B_{1}}\right]=0
$$

－Fear（no fear appeal vs．fear appeal）for efficacy message（ A at B_{2} ）

$$
\left[A_{B_{2}}\right]=\frac{31^{2}+49^{2}}{6}=560.33\left[T_{B_{2}}\right]=\frac{80^{2}}{12}=533.33\left[A_{B_{2}}\right]-\left[T_{B_{2}}\right]=27
$$

Simple Main Efiecis
Analysis a 2 2 Design
Data
Basic Palios
SS WITHIN，BETWEEN，\＆ TOTAL
SS Main Eflecis
SS Interacion DF
ANoVA Table
Simple Main Effects
Between－Group SS \＆DF
Simple Main Effects Table

Calculating Between-Group Sum of Squares

		Factor A: Fear		
		Level A_{1} no fear appeal	Level A_{2} fear appeal	
Efficacy	Level B_{1} no efficacy message	$\begin{gathered} \text { Total } A_{1} B_{1} \\ =30 \end{gathered}$	$\begin{gathered} \text { Total } A_{2} B_{1} \\ =30 \end{gathered}$	$\begin{gathered} \text { Total } B_{1}= \\ 30+30=60 \end{gathered}$
	Level B_{2} efficacy message	$\begin{gathered} \text { Total } A_{1} B_{2} \\ =31 \end{gathered}$	$\begin{gathered} \text { Total } A_{2} B_{2} \\ =49 \end{gathered}$	$\begin{gathered} \text { Total } B_{2}= \\ 31+49=80 \end{gathered}$
		$\begin{gathered} \text { Total } A_{1}= \\ 30+31=61 \end{gathered}$	$\begin{gathered} \text { Total } A_{2}= \\ 30+49=79 \end{gathered}$	

Calculating Between－Group Sum of Squares

－Fear（no fear appeal vs．fear appeal）for no efficacy message（ A at B_{1} ）

$$
\left[A_{B_{1}}\right]=\frac{30^{2}+30^{2}}{6}=300\left[T_{B_{1}}\right]=\frac{60^{2}}{12}=300\left[A_{B_{1}}\right]-\left[T_{B_{1}}\right]=0
$$

－Fear（no fear appeal vs．fear appeal）for efficacy message（ A at B_{2} ）

$$
\left[A_{B_{2}}\right]=\frac{31^{2}+49^{2}}{6}=560.33\left[T_{B_{2}}\right]=\frac{80^{2}}{12}=533.33\left[A_{B_{2}}\right]-\left[T_{B_{2}}\right]=27
$$

Simple Main Efiecis
Analysis a 2 2 Design
Data
Basic Palios
SS WITHIN，BETWEEN，\＆ TOTAL
SS Main Eflecis
SS Interacion DF
ANoVA Table
Simple Main Effects
Between－Group SS \＆DF
Simple Main Effects Table

Calculating Between－Group Sum of Squares

－Efficacy（no efficacy message vs．efficacy message）for no fear appeal（ B at A_{1} ）

$$
\left[B_{A_{1}}\right]=\frac{30^{2}+31^{2}}{6}=310.17\left[T_{A_{1}}\right]=\frac{61^{2}}{12}=310.08\left[B_{A_{1}}\right]-\left[T_{A_{1}}\right]=.09
$$

－Efficacy（no efficacy message vs．efficacy message）for fear appeal（ B at A_{2} ）

$$
\left[B_{A_{2}}\right]=\frac{30^{2}+49^{2}}{6}=550.17\left[T_{A_{2}}\right]=\frac{79^{2}}{12}=520.08\left[B_{A_{2}}\right]-\left[T_{A_{2}}\right]=30.09
$$

Analysis a 2 2 Design
Dala
Basic Ratios
SS WITHIN，BETWEEN，ε
TOTAL TOTAL
SS Main Effects
SS interaction DF
ANOVA Table
Simple Main Effects
Between－Group SS \＆DF Simple Main Effects Table

Calculating Between-Group Sum of Squares

- Efficacy (no efficacy message vs. efficacy message) for no fear appeal (B at A_{1})

$$
\left[B_{A_{1}}\right]=\frac{30^{2}+31^{2}}{6}=310.17\left[T_{A_{1}}\right]=\frac{61^{2}}{12}=310.08\left[B_{A_{1}}\right]-\left[T_{A_{1}}\right]=.09
$$

- Efficacy (no efficacy message vs. efficacy message) for fear appeal (B at A_{2})

$$
\left[B_{A_{2}}\right]=\frac{30^{2}+49^{2}}{6}=550.17\left[T_{A_{2}}\right]=\frac{79^{2}}{12}=520.08\left[B_{A_{2}}\right]-\left[T_{A_{2}}\right]=30.09
$$

Simple Main Eliecis
Analysis a 2 2 Design Data
Basic Ratios
SS WITHIN, BETWEEN, ε TOTAL
SS Main Effects
SS interaction DF
ANoVA Table
Simple Main Effects
Between-Group SS \& DF

Calculating Between-Group Sum of Squares

		Factor A: Fear		
		Level A_{1} no fear appeal	Level A_{2} fear appeal	
Efficacy	Level B_{1} no efficacy message	$\begin{gathered} \text { Total } A_{1} B_{1} \\ =30 \end{gathered}$	$\begin{gathered} \text { Total } A_{2} B_{1} \\ =30 \end{gathered}$	$\begin{gathered} \text { Total } B_{1}= \\ 30+30=60 \end{gathered}$
	Level B_{2} efficacy message	$\begin{gathered} \text { Total } A_{1} B_{2} \\ =31 \end{gathered}$	$\begin{gathered} \text { Total } A_{2} B_{2} \\ =49 \end{gathered}$	$\begin{gathered} \text { Total } B_{2}= \\ 31+49=80 \end{gathered}$
		$\begin{gathered} \text { Total } A_{1}= \\ 30+31=61 \end{gathered}$	$\begin{gathered} \text { Total } A_{2}= \\ 30+49=79 \end{gathered}$	

Calculating Between-Group Sum of Squares

- Efficacy (no efficacy message vs. efficacy message) for no fear appeal (B at A_{1})

$$
\left[B_{A_{1}}\right]=\frac{30^{2}+31^{2}}{6}=310.17\left[T_{A_{1}}\right]=\frac{61^{2}}{12}=310.08\left[B_{A_{1}}\right]-\left[T_{A_{1}}\right]=.09
$$

- Efficacy (no efficacy message vs. efficacy message) for fear appeal (B at A_{2})

$$
\left[B_{A_{2}}\right]=\frac{30^{2}+49^{2}}{6}=550.17\left[T_{A_{2}}\right]=\frac{79^{2}}{12}=520.08\left[B_{A_{2}}\right]-\left[T_{A_{2}}\right]=30.09
$$

Simple Main Eliecis
Analysis a 2 2 Design Data
Basic Ratios
SS WITHIN, BETWEEN, ε TOTAL
SS Main Effects
SS interaction DF
ANoVA Table
Simple Main Effects
Between-Group SS \& DF

Calculating Between－Group Sum of Squares

－Efficacy（no efficacy message vs．efficacy message）for no fear appeal（ B at A_{1} ）

$$
\left[B_{A_{1}}\right]=\frac{30^{2}+31^{2}}{6}=310.17\left[T_{A_{1}}\right]=\frac{61^{2}}{12}=310.08\left[B_{A_{1}}\right]-\left[T_{A_{1}}\right]=.09
$$

－Efficacy（no efficacy message vs．efficacy message）for fear appeal（ B at A_{2} ）

$$
\left[B_{A_{2}}\right]=\frac{30^{2}+49^{2}}{6}=550.17\left[T_{A_{2}}\right]=\frac{79^{2}}{12}=520.08\left[B_{A_{2}}\right]-\left[T_{A_{2}}\right]=30.09
$$

Mimple Main Effects
Analysis a 2 2 Design Data
Basic Ratios
SS WITHIN，BETWEEN，\＆ TOTAL
SS Main Effects
SS interaction DF
ANOVA Table
Simple Main Effects
Between－Group SS \＆DF

Calculating Between-Group Sum of Squares

		Factor A: Fear		
		Level A_{1} no fear appeal	Level A_{2} fear appeal	
Factor B Efficacy	Level B_{1} no efficacy message	$\begin{gathered} \text { Total } A_{1} B_{1} \\ =30 \end{gathered}$	$\begin{gathered} \text { Total } A_{2} B_{1} \\ =30 \end{gathered}$	$\begin{gathered} \text { Total } B_{1}= \\ 30+30=60 \end{gathered}$
	Level B_{2} efficacy message	$\begin{aligned} & \text { Total } A_{1} B_{2} \\ & =31 \end{aligned}$	$\begin{gathered} \text { Total } A_{2} B_{2} \\ =49 \end{gathered}$	$\begin{gathered} \text { Total } B_{2}= \\ 31+49=80 \end{gathered}$
		$\begin{gathered} \text { Total } A_{1}= \\ 30+31=61 \end{gathered}$	$\begin{gathered} \text { Total } A_{2}= \\ 30+49=79 \end{gathered}$	

Calculating Between－Group Sum of Squares

－Efficacy（no efficacy message vs．efficacy message）for no fear appeal（ B at A_{1} ）

$$
\left[B_{A_{1}}\right]=\frac{30^{2}+31^{2}}{6}=310.17\left[T_{A_{1}}\right]=\frac{61^{2}}{12}=310.08\left[B_{A_{1}}\right]-\left[T_{A_{1}}\right]=.09
$$

－Efficacy（no efficacy message vs．efficacy message）for fear appeal（ B at A_{2} ）

$$
\left[B_{A_{2}}\right]=\frac{30^{2}+49^{2}}{6}=550.17\left[T_{A_{2}}\right]=\frac{79^{2}}{12}=520.08\left[B_{A_{2}}\right]-\left[T_{A_{2}}\right]=30.09
$$

Mimple Main Effects
Analysis a 2 2 Design Data
Basic Ratios
SS WITHIN，BETWEEN，\＆ TOTAL
SS Main Effects
SS interaction DF
ANOVA Table
Simple Main Effects
Between－Group SS \＆DF

Summary Simple Main Effects Table By Components

SOURCE	Sum of Squares	Degrees of freedom	Mean Square	F	p
A at B_{1}	$\left[A_{B_{1}}\right]-\left[T_{B_{1}}\right]$	$(a-1)$	$\frac{\left[A_{B_{1}}\right]-\left[T_{B_{1}}\right]}{(a-1)}$	$\frac{\text { Mean Square }_{A a t B_{1}}}{\text { Mean Square }_{S / A B}}$	tables
A at B_{2}	$\left[A_{B_{2}}\right]-\left[T_{B_{2}}\right]$	$(a-1)$	$\frac{\left[A_{B_{2}}\right]-\left[T_{B_{2}}\right]}{(\mathrm{a}-1)}$	$\frac{\text { Mean } \text { Square }_{A \text { at } B_{2}}}{\text { Mean Square }{ }_{S / A B}}$	tables
B at A_{1}	$\left[B_{A_{1}}\right]-\left[T_{A_{1}}\right]$	$(b-1)$	$\frac{\left[B_{A_{1}}\right]-\left[T_{A_{1}}\right]}{(b-1)}$	$\frac{\text { Mean Square }_{B_{\text {at } A_{1}}}}{\text { Mean Square }}$	tables
B at A_{2}	$\left[B_{A_{2}}\right]-\left[T_{A_{2}}\right]$	$(b-1)$	$\frac{\left[B_{A_{2}}\right]-\left[T_{A_{2}}\right]}{(b-I)}$	$\frac{\text { Mean Square }_{\mathrm{Bata}_{2}}}{\text { Mean Square }{ }_{S / A B}}$	tables
$S / A B$	$[Y]-[A B]$	$a b(s-1)$	$\frac{[Y]-[A B]}{a b(s-I)}$		

Strucure
Main Elicats
Simple Man Ellecis
Analysis a 2
2 Design
${ }^{\text {Dasial }}$ Basic Ralios
${ }^{\text {Easct Faics }}$
SS WTHIN, BETWEEN,
ss Man Ellects
ss miteacion
anova tebie
Simple Main Effects

Between-Group SS \& DF
Simple Main Effects Table

Simple Main Effects Table For Hypothetical Data

| Source | Sum of Squares | Degrees of Freedom | Mean Square | F | P |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| A at B_{1} | 0.00 | 1 | 0.00 | 0.00 | 1.000 |
| A at B_{2} | 27.00 | 1 | 27.00 | 10.89 | $<.01$ |
| B at A_{1} | 0.09 | 1 | 0.09 | 0.04 | .856 |
| B at A_{2} | 30.09 | 1 | 30.09 | 12.13 | $<.01$ |
| $S / A B$ (error) | 49.67 | 20 | 2.48 | | |

ANOVA Table
Simple Main Effects
Between-Group SS \& DF
Simple Main Effects Table

Interaction Plot

m.hurlstone@ lancaster.ac.uk
2×2 Factorial Design
Siructure
Main Elects
Simple Main Effecis
Analysis a 2
2 Design
Dala
Basic Ralios
SS WITHIN, BETWEEN, \&
TOTAL
SS Main Effects
SS Interacion
DF
ANOVA Table
Simple Main
Effects
Between-Group SS \& DF
Simple Main Effects Table

Efficacy

- No Efficacy Message (B_{1})
- Efficacy Message (B_{2})

Additional Resources

－The R code for all plots generated in this lecture（minus annotations） has been uploaded with these slides to the Week 6 lecture folder（ R Plots For Lecture 7．R）

In Next Week’s Lab ．．．

－Running a 2×2（and 2×3 ）between－participants ANOVA in R
－Calculating and interpreting simple main effects
Simple Main Effects
Analysis a 2

References

Roberts, M. J., \& Russo, R. (1999, Chapter 9-10). A student's guide to Analysis of Variance. Routledge: London.

Main Effects
Simple Main Effects
Analysis a 2

