Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Erro Variance in Scores

Four

Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement

Parallel lests

References

Reliability: Theoretical Basis

PSYC3302: Psychological Measurement and Its Applications

Mark Hurlstone Univeristy of Western Australia

Week 3

イロト 不得 とくほ とくほ とう

э

Learning Objectives

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four

Conceptions of Reliability

Conception 1

Conception 3

Conception 4

Standard Error of Measurement

Parallel Tests

References

- Introduction to the theoretical basis of reliability:
- Classical Test Theory
 - observed score, true score, and error score variability

イロト イポト イヨト イヨト

э

- four conceptions of reliability
- standard error of measurement
- parallel tests

Reliability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

- Four Conceptions of Reliability Conception 1 Conception 2
- Conception 3 Conception 4
- Standard Error of Measurement
- Parallel Tests
- References

- Reliability refers to the *consistency* of a measuring tool
 - the precision with which the test measures
 - the degree to which error is present in the measurement

イロト 不得 とくほ とくほ とう

- For example, suppose we want to test the reliability of three measuring scales (Scale A, B, & C)
- Using each scale, we weigh, on three separate occasions, a gold bar certified to weigh exactly 1000 grams

Reference

イロト イポト イヨト イヨト

э

Reliability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four

of Reliability Conception 1 Conception 2

Conception 3

Standard Error of Measurement

Deferences

- Whether we are measuring gold bars, behaviour, or anything else, unreliable measurement is to be avoided
- We want to know that a measuring tool or test we are using is reasonably consistent
- Reliability is not an all-or-nothing thing—it exists on a continuum
- That is, a measuring tool or test will be more or less reliable

イロト イポト イヨト イヨト

э

Reliability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2

Conception 3 Conception 4

Standard Error of Measurement

. .

- In every day usage, reliability connotes something positive
 - In psychometrics, it only refers to something that is consistent
 - Not necessarily consistently "good" or "bad"
 - Just consistent

イロト 不得 とくほ とくほとう

3

Classical Test Theory (CTT)

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory

Observed Scores, True Scores, & Error Variance in Scores

Four

Conceptions of Reliability Conception 1 Conception 2 Conception 3

Standard Error of Measurement

Parallel Tests

References

- Classical Test Theory (CTT; also known as *True Score Theory*) is a theory of measurement that defines the theoretical basis for reliability
- It also outlines procedures for estimating the reliability of psychological measures
- According to CTT, a test's reliability reflects the extent to which differences in respondent's test scores are a function of their true psychological differences, as opposed to measurement error

イロト 不得 とくほ とくほとう

э

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Tes Theory

Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability

Conception 2

Conception 3

Standard Error of Measuremen

Parallel Tests

References

- CTT assumes that each respondent's *observed score* on a psychological test reflects the sum of two components:
 - 1 their *true score* on the psychological characteristic being measured
 - 2 measurement error
- The true score is the actual amount of the psychological characteristic being measured by a test that a respondent possesses
- Measurement error refers to the component of the observed score that does not have to do with the psychological characteristic being measured

ヘロン 人間 とくほ とくほう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement

Parallel Tests

References

- According to CTT, reliability is the degree to which differences in respondents' observed scores on a test are consistent with differences in their true scores
- More specifically, it is the extent to which differences in respondents' observed scores are attributable to differences in their true scores, as opposed to measurement error
- Measurement error creates inconsistency between observed scores and true scores

ヘロン 人間 とくほ とくほう

• When measuring psychological attributes—or anything else—the results of the measurement will always be unreliable to some degree

Working Memory Example

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conception of Reliability Conception 1 Conception 2 Conception 3

Standard Error of Measurement

Poforoncoc

- Before discussing CTT in more depth, let's consider an example to illustrate these ideas
- Suppose I want to compare the working memory abilities of four people—Brenda, Frank, Linda, and Stanley

イロト 不同 トイヨト イヨト

э

• To measure their working memory, I administer the Operation Span task described in our Week 1 lecture

mark.hurlstone@uwa.edu.au Psychological Measurement

イロト 不得 とくほ とくほとう

ъ

References

イロト 不得 とくほ とくほ とう

ъ

Sources of Measurement Error

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Tes Theory

Observed Scores, True Scores, & Error Variance in Scores

- Four Conce
- of Reliability
- Conception 2
- Conception 3
- Conception 4
- Standard Error of Measurement
- Parallel Tests
- References

There are various sources of Measurement Error:

- Test construction
 - item sampling (variation among items in a test)
 - content sampling (variation among items between tests)
- Test administration
 - test environment (temperature, lighting, noise)
 - events of the day (positive vs. negative events)
 - test-taker variables (physical discomfort, lack of sleep)

ヘロン 人間 とくほ とくほ とう

- examiner-related variables (physical appearance & demeanour)
- 8 Test scoring and interpretation
 - subjectivity in scoring (grey area responses)
 - recording errors (technical glitches)

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Tes Theory

Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3

Standard Error of Measurement Parallel Tests

References

- Reliability depends on two things:
 - The extent to which differences in test scores can be attributed to real individual differences
 - 2 The extent to which differences in test scores are due to error
- A person's observed score on a test is that person's true score, plus error, which can be expressed as:

$$X_o = X_t + X_e, \tag{10}$$

イロト イポト イヨト イヨト

• Where *X_o* represents a person's observed score, *X_t* represents a person's true score, and *X_e* represents error

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement Parallel Tests

References

Table: Responses to a Self-Esteem Questionnaire

-	Respondent	Observed Score (X_o)		True Score (X_t)		Error Score (X_e)
-	Ashley	120	=	130	+	-10
	Bob	145	=	120	+	25
	Carl	95	=	110	+	-15
	Denise	85	=	100	+	–15
	Eric	115	=	90	+	25
	Felicia	70	=	80	+	-10
	Mean	105.00		105		0
	Variance	608.33		291.67		316.67
	Std. Dev	24.66		17.08		17.80
	Reliability	$R_{xx} = .48$		$r_{ot} = .69$		$r_{oe} = .72$
_		$r_{te} = .00$		$r_{ot} = .40$		$r_{oe}^{-} = .52$

イロト 不得 とくほ とくほとう

ъ

mark.hurlstone@uwa.edu.au Psychological Measurement

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores & Error

Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement Parallel Tests

References

- This is an "all-knowing" example—we are pretending to know certain things that we don't actually know
- It assumes that we know a person's true score, which of course we do not—it is a hypothetical amount that cannot be directly observed

イロト イポト イヨト イヨト

- The same is also true of measurement error
- The only amount that we do know is a respondent's observed score on a test or measurement

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Tes Theory

Observed Scores, True Scores, & Error Variance in Scores

Four

Conceptions of Reliability Conception 1 Conception 2 Conception 3

Standard Error of Measurement

Parallel Tests

References

- Several key assumptions of CTT are illustrated in this data set:
 - Observed scores on a psychological measure are determined by a respondent's true scores plus measurement error
 - 2 Measurement error is random—it is just as likely to inflate a score as to deflate it
 - (A) error tends to cancel itself out across respondents ($\overline{X}_e = 0$)

イロン 不得 とくほ とくほう

э

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Tes Theory

Observed Scores, True Scores, & Error Variance in Scores

Four

Conception 2

Conception 3

Standard Error of Measurement

Parallel Tests

References

- Several key assumptions of CTT are illustrated in this data set:
 - Observed scores on a psychological measure are determined by a respondent's true scores plus measurement error
 - 2 Measurement error is random—it is just as likely to inflate a score as to deflate it
 - (A) error tends to cancel itself out across respondents ($\overline{X}_e = 0$)

イロト 不得 とくほ とくほとう

э

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement Parallel Tests

References

Table: Responses to a Self-Esteem Questionnaire

Re	spondent	Observed Score (X_o)		True Score (X_t)		Error Score (X_e)
Asl	hley	120	=	130	+	-10
Bol	b	145	=	120	+	25
Ca	rl	95	=	110	+	-15
De	nise	85	=	100	+	-15
Eri	с	115	=	90	+	25
Fel	icia	70	=	80	+	-10
Me	an	105.00		105		0
Var	riance	608.33		291.67		316.67
Sto	I. Dev	24.66		17.08		17.80
Re	liability	$R_{xx} = .48$		$r_{ot} = .69$ $r^2 = .48$		$r_{oe} = .72$
		$r_{te} = .00$		$r_{ot}^{-} = .40$		$r_{oe}^{-} = .52$

・ロト・雪・・雪・・雪・ うらぐ

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Tes Theory

Observed Scores, True Scores, & Error Variance in Scores

Four

Conception 2

Conception 3

Standard Error of Measurement

Parallel Tests

References

- Several key assumptions of CTT are illustrated in this data set:
 - Observed scores on a psychological measure are determined by a respondent's true scores plus measurement error
 - 2 Measurement error is random—it is just as likely to inflate a score as to deflate it
 - (A) error tends to cancel itself out across respondents ($\overline{X}_e = 0$)

イロト 不得 とくほ とくほとう

э

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Tes Theory

Observed Scores, True Scores, & Error Variance in Scores

Four

Conceptions of Reliability Conception 1 Conception 2 Conception 3

. Conception 4

Standard Error of Measurement

Parallel Tests

References

- Several key assumptions of CTT are illustrated in this data set:
 - Observed scores on a psychological measure are determined by a respondent's true scores plus measurement error
 - 2 Measurement error is random—it is just as likely to inflate a score as to deflate it
 - (A) error tends to cancel itself out across respondents ($\overline{X}_e = 0$)

イロン 不得 とくほ とくほう

э

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Tes Theory

Observed Scores, True Scores, & Error Variance in Scores

Four

Conceptions of Reliability Conception 1 Conception 2 Conception 3

Standard Error of Measurement

Parallel Tests

References

- Several key assumptions of CTT are illustrated in this data set:
 - Observed scores on a psychological measure are determined by a respondent's true scores plus measurement error
 - 2 Measurement error is random—it is just as likely to inflate a score as to deflate it
 - (A) error tends to cancel itself out across respondents ($\overline{X}_e = 0$)

イロト 不得 とくほ とくほとう

э

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement Parallel Tests

References

Table: Responses to a Self-Esteem Questionnaire

Respondent	Observed Score (X_o)		True Score (X_t)		Error Score (X_e)
Ashley	120	=	130	+	-10
Bob	145	=	120	+	25
Carl	95	=	110	+	-15
Denise	85	=	100	+	-15
Eric	115	=	90	+	25
Felicia	70	=	80	+	-10
Mean	105.00		105		0
Variance	608.33		291.67		316.67
Std. Dev	24.66		17.08		17.80
Reliability	$R_{xx} = .48$		$r_{ot} = .69$		$r_{oe} = .72$
	$r_{te} = .00$		$r_{ot}^2 = .48$		$r_{oe}^2 = .52$

イロト 不得 とくほ とくほとう

ъ

mark.hurlstone@uwa.edu.au Psychological Measurement

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Tes Theory

Observed Scores, True Scores, & Error Variance in Scores

Four

Conceptions of Reliability Conception 1 Conception 2 Conception 3

- Standard Error of Measurement
- Parallel Tests

References

- Several key assumptions of CTT are illustrated in this data set:
 - Observed scores on a psychological measure are determined by a respondent's true scores plus measurement error
 - 2 Measurement error is random—it is just as likely to inflate a score as to deflate it
 - (A) error tends to itself cancel out across respondents ($\overline{X}_e = 0$)

イロト 不得 とくほ とくほとう

э

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Tes Theory

Observed Scores, True Scores, & Error Variance in Scores

Four

Conceptions of Reliability Conception 1 Conception 2 Conception 3

Standard Error of Measurement

Parallel Tests

References

- Several key assumptions of CTT are illustrated in this data set:
 - Observed scores on a psychological measure are determined by a respondent's true scores plus measurement error
 - 2 Measurement error is random—it is just as likely to inflate a score as to deflate it
 - (A) error tends to itself cancel out across respondents ($\overline{X}_e = 0$)

イロト 不得 とくほ とくほとう

э

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement Parallel Tests

References

Table: Responses to a Self-Esteem Questionnaire

Respondent	Observed Score (X_o)		True Score (X_t)		Error Score (X_e)
Ashley	120	=	130	+	-10
Bob	145	=	120	+	25
Carl	95	=	110	+	-15
Denise	85	=	100	+	-15
Eric	115	=	90	+	25
Felicia	70	=	80	+	-10
Mean	105.00		105		0
Variance	608.33		291.67		316.67
Std. Dev	24.66		17.08		17.80
Reliability	$R_{xx} = .48$ $r_{te} = .00$		$r_{ot} = .69$ $r_{ot}^2 = .48$		$r_{oe} = .72$ $r_{oa}^2 = .52$
	Respondent Ashley Bob Carl Denise Eric Felicia Mean Variance Std. Dev Reliability	RespondentObserved Score (X_o) Ashley120Bob145Carl95Denise85Eric115Felicia70Mean105.00Variance608.33Std. Dev24.66Reliability $R_{xx} = .48$ $r_{le} = .00$	RespondentObserved Score (X_o) Ashley120Bob145Carl95Denise85Eric115Felicia70Mean105.00Variance608.33Std. Dev24.66Reliability $R_{xx} = .48$ $r_{le} = .00$	Respondent Observed Score (X_o) True Score (X_t) Ashley 120 = 130 Bob 145 = 120 Carl 95 = 110 Denise 85 = 100 Eric 115 = 90 Felicia 70 = 80 Mean 105.00 105 Variance 608.33 291.67 Std. Dev 24.66 17.08 Reliability $R_{xx} = .48$ $r_{ot} = .69$ $r_{le} = .00$ $r_{ot}^2 = .48$	Respondent Observed Score (X_o) True Score (X_i) Ashley 120 = 130 + Bob 145 = 120 + Carl 95 = 110 + Denise 85 = 100 + Eric 115 = 90 + Felicia 70 = 80 + Mean 105.00 105 Variance 608.33 291.67 Std. Dev 24.66 17.08 Reliability $R_{xx} = .48$ $r_{ot} = .69$ $r_{te} = .00$ $r_{ot}^2 = .48$ $r_{ot} = .48$ $r_{ot} = .48$

イロト 不得 とくほ とくほとう

ъ

mark.hurlstone@uwa.edu.au Psychological Measurement

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Tes Theory

Observed Scores, True Scores, & Error Variance in Scores

Four

Conceptions of Reliability Conception 1 Conception 2 Conception 3

Standard Error of Measurement

Parallel Tests

References

- Several key assumptions of CTT are illustrated in this data set:
 - Observed scores on a psychological measure are determined by a respondent's true scores plus measurement error
 - 2 Measurement error is random—it is just as likely to inflate a score as to deflate it
 - (A) error tends to itself cancel out across respondents ($\overline{X}_e = 0$)

イロト 不得 とくほ とくほとう

э

Classical Test Theory (CTT)

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement

Parallel Tests

References

- Reliability reflects the degree to which *differences* in observed scores are consistent with *differences* in true scores, as opposed to error
- Stated another way, it depends on the links between observed score, true score, and error score variability
- We can describe the variability of the three different types of scores using the variance *s*²
- The relationship of the three variances can be expressed as:

$$s_o^2 = s_t^2 + s_e^2,$$
 (11)

ヘロン 人間 とくほ とくほ とう

• Where s_o^2 is observed variance, s_t^2 is true variance, and s_e^2 is error variance

Four Conceptions of Reliability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability

Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement

Parallel Tests

References

- We can use the links between the observed score, true score, and error score variances to compute a reliability coefficient, denoted *R*_{xx}
- The reliability coefficient varies between 0 and 1
- Larger *R_{xx}* values indicate greater reliability
- If the true score variance is equal to observed score variance then $R_{xx} = 1$ and reliability is perfect
- This would indicate that there is no measurement error affecting observed scores

イロン 不得 とくほ とくほう

-

Four Conceptions of Reliability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability

Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement

References

- There is no clear cut-off separating "good" from "bad" reliability
- A perfect reliability of 1 will not occur—there will always be measurement error
- A reliability coefficient of .7 or .8 is acceptable for research purposes
- A reliability of .9 or greater is needed for applied purposes

イロト イポト イヨト イヨト

э
Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability

Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement

References

Table: A 2 \times 2 Framework for Conceptualising Reliability

		Conceptual Bas	sis of Reliability
		True Scores	Measurement Error
Statistical Basis of Reliability Proportions of variance Reliability is the ratio of score variance to observation		Reliability is the ratio of true score variance to observed score variance	Reliability is the lack of erro variance
		$R_{xx} = \frac{s_t^2}{s_o^2}$	$R_{xx} = 1 - \frac{s_e^2}{s_o^2}$
	Correlations	Reliability is the (squared) corre- lation between observed scores and true scores	Reliability is the lack of corre lation between observed score and error scores
		$R_{xx} = r_{ot}^2$	$R_{xx} = 1 - r_{oe}^2$

イロト 不得 とくほ とくほとう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability

Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement Parallel Tests

References

Table: A 2 \times 2 Framework for Conceptualising Reliability

		Conceptual Basis of Reliability		
		True Scores	Measurement Error	
Statistical Basis of Reliability Proportions of variance Reliability is the ratio of true score variance to observed score variance		Reliability is the lack of err variance		
		$R_{xx} = \frac{s_t^2}{s_o^2}$	$R_{xx} = 1 - \frac{s_e^2}{s_o^2}$	
	Correlations	Reliability is the (squared) corre- lation between observed scores and true scores	Reliability is the lack of correlation between observed scores and error scores	
		$R_{xx} = r_{ot}^2$	$R_{xx} = 1 - r_{oe}^2$	

イロト 不得 とくほ とくほとう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability

Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement Parallol Tosts

References

Table: A 2 \times 2 Framework for Conceptualising Reliability

		Conceptual Basis of Reliability		
		True Scores	Measurement Error	
Statistical Basis of Reliability Proportions of variance Reliability is the ratio of true score variance to observed score variance		Reliability is the lack of erro variance		
		$R_{xx} = \frac{s_t^2}{s_o^2}$	$R_{xx} = 1 - \frac{s_e^2}{s_o^2}$	
	Correlations	Reliability is the (squared) corre- lation between observed scores and true scores	Reliability is the lack of corre lation between observed scores and error scores	
		$R_{xx} = r_{ot}^2$	$R_{xx} = 1 - r_{oe}^2$	

イロト 不得 とくほ とくほとう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptio

Conception 1 Conception 2

Conception 3

Standard Error of Measurement Parallel Tests

References

Reminder: $s_o^2 = s_t^2 + s_e^2$,

- This is perhaps the most common way of expressing reliability
- Reliability is the proportion of observed score variance attributable to true score variance:

$$R_{xx} = \frac{s_t^2}{s_a^2},\tag{12}$$

э

• For our example:

$$R_{xx} = \frac{291.67}{608.33} = .48,$$

mark.hurlstone@uwa.edu.au Psychological Measurement

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptio

Of Reliability Conception 1

Conception 2 Conception 3

Standard Error of Measurement Parallel Tests

References

Reminder: $s_o^2 = s_t^2 + s_e^2$,

- This is perhaps the most common way of expressing reliability
- Reliability is the proportion of observed score variance attributable to true score variance:

$$R_{xx} = \frac{s_t^2}{s_a^2},\tag{12}$$

э

• For our example:

$$R_{xx} = \frac{291.67}{608.33} = .48,$$

mark.hurlstone@uwa.edu.au Psychological Measurement

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptio

Conception 1 Conception 2

Conception 3

Standard Error of Measurement Parallel Tests

References

Reminder: $s_o^2 = s_t^2 + s_e^2$,

- This is perhaps the most common way of expressing reliability
- Reliability is the proportion of observed score variance attributable to true score variance:

$$R_{xx} = \frac{s_t^2}{s_a^2},\tag{12}$$

3

$$R_{xx} = \frac{291.67}{608.33} = .48,$$

Classical Test Theory

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement Parallel Tests

References

Table: Responses to a Self-Esteem Questionnaire

Respondent	Observed Score (X_o)		True Score (X_t)		Error Score (X_e)
Ashley	120	=	130	+	-10
Bob	145	=	120	+	25
Carl	95	=	110	+	-15
Denise	85	=	100	+	-15
Eric	115	=	90	+	25
Felicia	70	=	80	+	-10
Mean	105.00		105		0
Variance	608.33		291.67		316.67
Std. Dev	24.66		17.08		17.80
Reliability	$R_{xx} = .48$		$r_{ot} = .69$		$r_{oe} = .72$
-	$r_{te} = .00$		$r_{ot}^2 = .48$		$r_{oe}^2 = .52$

イロト 不得 とくほ とくほとう

ъ

mark.hurlstone@uwa.edu.au Psychological Measurement

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptio

Conception 1 Conception 2

Conception 3

Standard Error of Measurement Parallel Tests

References

Reminder: $s_o^2 = s_t^2 + s_e^2$,

- This is perhaps the most common way of expressing reliability
- Reliability is the proportion of observed score variance attributable to true score variance:

$$R_{xx} = \frac{s_t^2}{s_a^2},\tag{12}$$

3

$$R_{xx} = \frac{291.67}{608.33} = .48,$$

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1

Conception 2 Conception 3 Conception 4

Standard Error of Measurement Parallel Tests

References

Table: A 2 \times 2 Framework for Conceptualising Reliability

		Conceptual Basis of Reliability			
		True Scores	Measurement Error		
Statistical Basis of Reliability	Proportions of variance	Reliability is the ratio of true score variance to observed score variance	Reliability is the lack of erro variance		
		$R_{xx} = \frac{s_t^2}{s_o^2}$	$R_{xx} = 1 - \frac{s_e^2}{s_o^2}$		
	Correlations	Reliability is the (squared) corre- lation between observed scores and true scores	Reliability is the lack of corre lation between observed scores and error scores		
		$R_{xx} = r_{ot}^2$	$R_{xx} = 1 - r_{oe}^2$		

イロト 不得 とくほ とくほ とう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1

Conception 2 Conception 3 Conception 4

Standard Error of Measurement Parallel Tests

References

Table: A 2 \times 2 Framework for Conceptualising Reliability

		Conceptual Basis of Reliability		
		True Scores	Measurement Error	
Statistical Basis of Reliability	Proportions of variance	Reliability is the ratio of true score variance to observed score variance	Reliability is the lack of erro variance	
		$R_{xx} = \frac{s_t^2}{s_o^2}$	$R_{xx} = 1 - \frac{s_e^2}{s_o^2}$	
	Correlations	Reliability is the (squared) corre- lation between observed scores and true scores	Reliability is the lack of corre lation between observed scores and error scores	
		$R_{xx} = r_{ot}^2$	$R_{xx} = 1 - r_{oe}^2$	

イロト 不得 とくほ とくほ とう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four

Conceptions of Reliability

Conception 2

Conception 3

Standard Error of Measurement Parallel Tests

References

Reminder:
$$s_o^2 = s_t^2 + s_e^2$$
,

 Reliability is conceived as the degree to which measurement error is minimised in comparison with the variance of observed scores:

$$R_{xx} = 1 - \frac{s_e^2}{s_o^2},$$
 (13)

イロト 不得 とくほ とくほ とう

э

$$R_{xx} = 1 - \frac{316.67}{608.33} = 1 - .52 = .48,$$

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four

Conceptions of Reliability

Conception 2

Conception 3

Standard Error of Measurement Parallel Tests

References

Reminder:
$$s_o^2 = s_t^2 + s_e^2$$
,

 Reliability is conceived as the degree to which measurement error is minimised in comparison with the variance of observed scores:

$$R_{xx} = 1 - \frac{s_e^2}{s_o^2},$$
 (13)

イロト 不得 とくほ とくほ とう

э

$$R_{xx} = 1 - \frac{316.67}{608.33} = 1 - .52 = .48,$$

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four

Conceptions of Reliability

Conception 2

Conception 3

Standard Error of Measurement Parallel Tests

References

Reminder:
$$s_o^2 = s_t^2 + s_e^2$$
,

 Reliability is conceived as the degree to which measurement error is minimised in comparison with the variance of observed scores:

$$R_{xx} = 1 - \frac{s_e^2}{s_o^2},$$
 (13)

イロト 不得 とくほ とくほ とう

э

$$R_{xx} = 1 - \frac{316.67}{608.33} = 1 - .52 = .48,$$

Classical Test Theory

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement Parallel Tests

References

Table: Responses to a Self-Esteem Questionnaire

Respondent	Observed Score (X_o)		True Score (X_t)		Error Score (X_e)
Ashley	120	=	130	+	-10
Bob	145	=	120	+	25
Carl	95	=	110	+	-15
Denise	85	=	100	+	–15
Eric	115	=	90	+	25
Felicia	70	=	80	+	-10
Mean	105.00		105		0
Variance	608.33		291.67		316.67
Std. Dev	24.66		17.08		17.80
Reliability	$R_{xx} = .48$		$r_{ot} = .69$		$r_{oe} = .72$
-	$r_{te} = .00$		$r_{ot}^2 = .48$		$r_{oe}^2 = .52$

mark.hurlstone@uwa.edu.au Psychological Measurement

イロト 不得 とくほ とくほとう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four

Conceptions of Reliability

Conception 2

Conception 3

Standard Error of Measurement Parallel Tests

References

Reminder:
$$s_o^2 = s_t^2 + s_e^2$$
,

 Reliability is conceived as the degree to which measurement error is minimised in comparison with the variance of observed scores:

$$R_{xx} = 1 - \frac{s_e^2}{s_o^2},$$
 (13)

イロト 不得 とくほ とくほ とう

э

$$R_{xx} = 1 - \frac{316.67}{608.33} = 1 - .52 = .48,$$

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2

Conception 3 Conception 4

Standard Error of Measurement Parallel Tests

References

Table: A 2 \times 2 Framework for Conceptualising Reliability

		Conceptual Basis of Reliability		
		True Scores	Measurement Error	
Statistical Basis of Reliability	Proportions of variance	Reliability is the ratio of true score variance to observed score variance	Reliability is the lack of error variance	
		$R_{xx} = \frac{s_t^2}{s_o^2}$	$R_{xx} = 1 - \frac{s_e^2}{s_o^2}$	
	Correlations	Reliability is the (squared) corre- lation between observed scores and true scores	Reliability is the lack of corre- lation between observed scores and error scores	
		$R_{xx} = r_{ot}^2$	$R_{xx} = 1 - r_{oe}^2$	

イロト 不得 とくほ とくほ とう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2

Conception 3 Conception 4

Standard Error of Measurement Parallel Tests

References

Table: A 2 \times 2 Framework for Conceptualising Reliability

		Conceptual Basis of Reliability		
		True Scores	Measurement Error	
Statistical Basis of Reliability	Proportions of variance	Reliability is the ratio of true score variance to observed score variance	Reliability is the lack of error variance	
		$R_{XX} = \frac{s_t^2}{s_o^2}$	$R_{XX} = 1 - \frac{s_e^2}{s_o^2}$	
	Correlations	Reliability is the (squared) corre- lation between observed scores and true scores	Reliability is the lack of corre- lation between observed scores and error scores	
		$R_{xx} = r_{ot}^2$	$R_{xx} = 1 - r_{oe}^2$	

イロト 不得 とくほ とくほ とう

э

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Concep

Conception 1

Conception 2

Conception 3

Standard Error of Measurement

References

Reminder:
$$s_o^2 = s_t^2 + s_e^2$$
,

• Reliability is conceived as the (squared) correlation between observed scores and true scores:

$$R_{xx} = r_{ot}^2, \tag{14}$$

イロト 不得 とくほ とくほ とう

$$R_{xx} = .69^2 = .48$$

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Concep

Conception 1

Conception 2

Conception 3

Standard Error of Measurement Parallel Tests

References

Reminder:
$$s_o^2 = s_t^2 + s_e^2$$
,

• Reliability is conceived as the (squared) correlation between observed scores and true scores:

$$R_{xx} = r_{ot}^2, \tag{14}$$

イロト 不得 とくほ とくほ とう

$$R_{xx} = .69^2 = .48$$

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Concep

Conception 1

Conception 3

Standard Error of Measuremen Parallel Tests

References

Reminder:
$$s_o^2 = s_t^2 + s_e^2$$
,

• Reliability is conceived as the (squared) correlation between observed scores and true scores:

$$R_{xx} = r_{ot}^2, \tag{14}$$

イロト 不得 とくほ とくほ とう

$$R_{xx} = .69^2 = .48$$

Classical Test Theory

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement Parallel Tests

Table: Responses to a Self-Esteem Questionnaire

Observed Score (X_o)		True Score (X_t)		Error Score (X_e)
120	=	130	+	-10
145	=	120	+	25
95	=	110	+	-15
85	=	100	+	–15
115	=	90	+	25
70	=	80	+	-10
105.00		105		0
608.33		291.67		316.67
24.66		17.08		17.80
$R_{xx} = .48$ $r_{te} = .00$		$r_{ot} = .69$ $r_{ot}^2 = .48$		$r_{oe} = .72$ $r_{oe}^2 = .52$
	Observed Score (X _o) 120 145 95 85 115 70 105.00 608.33 24.66 $R_{xx} = .48$ $r_{te} = .00$	Observed Score (X_o) 120 = 145 = 95 = 95 = 115 = 105.00 608.33 24.66 $R_{xx} = .48$ $r_{te} = .00$	Observed Score (X_o) True Score (X_t) 120 = 130 145 = 120 95 = 110 85 = 100 115 = 90 70 = 80 105.00 105 608.33 291.67 24.66 17.08 $R_{xx} = .48$ $r_{ot} = .69$ $r_{te} = .00$ $r_{ot}^2 = .48$	Observed Score (X_o) True Score (X_i) 120=130+145=120+95=110+85=100+115=90+70=80+105.00105608.33291.6724.6617.0817.08 $R_{xx} = .48$ $r_{ot} = .69$ $r_{te} = .00$ $r_{ot}^2 = .48$ $r_{ot} = .48$

イロト 不得 とくほ とくほとう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Concep

Conception 1

Conception 3

Standard Error of Measuremen Parallel Tests

References

Reminder:
$$s_o^2 = s_t^2 + s_e^2$$
,

• Reliability is conceived as the (squared) correlation between observed scores and true scores:

$$R_{xx} = r_{ot}^2, \tag{14}$$

イロト 不得 とくほ とくほ とう

$$R_{xx} = .69^2 = .48$$

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2

Conception 3 Conception 4

Standard Error of Measurement Parallel Tests

Table: A 2 \times 2 Framework for Conceptualising Reliability

		Conceptual Basis of Reliability		
		True Scores	Measurement Error	
Statistical Basis of Reliability	Proportions of variance	Reliability is the ratio of true score variance to observed score variance	Reliability is the lack of error variance	
		$R_{xx} = \frac{s_t^2}{s_o^2}$	$R_{xx} = 1 - \frac{s_e^2}{s_o^2}$	
	Correlations	Reliability is the (squared) corre- lation between observed scores and true scores	Reliability is the lack of corre- lation between observed scores and error scores	
		$R_{xx} = r_{ot}^2$	$R_{xx} = 1 - r_{oe}^2$	

イロト 不得 とくほ とくほ とう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conception of Reliability Conception 1

Conception 3

Standard Error of Measurement Parallel Tests

References

Table: A 2 \times 2 Framework for Conceptualising Reliability

		Conceptual Basis of Reliability		
		True Scores	Measurement Error	
Statistical Basis of Reliability	Proportions of variance	Reliability is the ratio of true score variance to observed score variance	Reliability is the lack of erro variance	
		$R_{xx} = \frac{s_t^2}{s_o^2}$	$R_{xx} = 1 - \frac{s_e^2}{s_o^2}$	
	Correlations	Reliability is the (squared) corre- lation between observed scores and true scores	Reliability is the lack of correlation between observed scores and error scores	
		$R_{xx} = r_{ot}^2$	$R_{xx} = 1 - r_{oe}^2$	

イロト 不得 とくほ とくほ とう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conce

of Reliabilit

Conception 3

Standard Error of Measuremer

References

Reminder:
$$s_o^2 = s_t^2 + s_e^2$$
,

 Reliability is conceptualised as the absence of (squared) correlation between observed scores and error scores:

$$R_{xx} = 1 - r_{oe}^2, \tag{15}$$

ヘロン 人間 とくほ とくほ とう

$$R_{xx} = 1 - (.72)^2 = 1 - .52 = .48$$

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four

of Reliabilit

Conception 2

Conception 4

Standard Error of Measuremen Parallel Tests

References

Reminder:
$$s_o^2 = s_t^2 + s_e^2$$
,

 Reliability is conceptualised as the absence of (squared) correlation between observed scores and error scores:

$$R_{xx} = 1 - r_{oe}^2, \tag{15}$$

ヘロン 人間 とくほ とくほ とう

$$R_{xx} = 1 - (.72)^2 = 1 - .52 = .48$$

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conce

of Reliability Conception 1 Conception 2

Conception 3

Standard Error of Measuremen Parallel Tests

References

Reminder:
$$s_o^2 = s_t^2 + s_e^2$$
,

 Reliability is conceptualised as the absence of (squared) correlation between observed scores and error scores:

$$R_{xx} = 1 - r_{oe}^2, \tag{15}$$

ヘロン 人間 とくほ とくほ とう

$$R_{xx} = 1 - (.72)^2 = 1 - .52 = .48$$

Classical Test Theory

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement Parallel Tests Beferences

Table: Responses to a Self-Esteem Questionnaire

	Respondent	Observed Score (X_o)		True Score (X_t)		Error Score (X_e)
-	Ashley	120	=	130	+	-10
	Bob	145	=	120	+	25
	Carl	95	=	110	+	-15
	Denise	85	=	100	+	-15
	Eric	115	=	90	+	25
	Felicia	70	=	80	+	-10
	Mean	105.00		105		0
	Variance	608.33		291.67		316.67
	Std. Dev	24.66		17.08		17.80
	Reliability	$\frac{R_{xx}}{r_{te}} = .48$		$r_{ot} = .69$ $r_{ot}^2 = .48$		$r_{oe} = .72$ $r_{oe}^2 = .52$

イロト 不得 とくほ とくほとう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conce

of Reliability Conception 1 Conception 2

Conception 3

Standard Error of Measuremen Parallel Tests

References

Reminder:
$$s_o^2 = s_t^2 + s_e^2$$
,

 Reliability is conceptualised as the absence of (squared) correlation between observed scores and error scores:

$$R_{xx} = 1 - r_{oe}^2, \tag{15}$$

ヘロン 人間 とくほ とくほ とう

$$R_{xx} = 1 - (.72)^2 = 1 - .52 = .48$$

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

- Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores
- Four Conception
- Conception 1
- Conception 2
- Conception 3
- Standard Error of Measurement
- References

- The book provides a detailed discussion of the links between the four conceptions of reliability
- It also includes mathematical "proofs" of their relationships to one another

ヘロン 人間 とくほ とくほ とう

ъ

 You don't need to know the proofs—you just need to remember the four formulas and be able to perform the reliability calculations

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four

Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement

- Parallel Tests
- References

- The reliability coefficient *R_{xx}* does not directly reflect the size of measurement error associated with a test
- By contrast, the standard deviation of error scores tell us in "test score units" the average size of error scores we can expect to find when a test is administered to a group of people
- For our example, the standard deviation of error scores is 17.80
- The standard deviation of error is also known as the standard error of measurement and is a crucially important concept in psychometrics

イロン 不得 とくほう 不良 とう

э

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four

Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement

- Parallel Tests
- References

- The reliability coefficient *R_{xx}* does not directly reflect the size of measurement error associated with a test
- By contrast, the standard deviation of error scores tell us in "test score units" the average size of error scores we can expect to find when a test is administered to a group of people
- For our example, the standard deviation of error scores is 17.80
- The standard deviation of error is also known as the standard error of measurement and is a crucially important concept in psychometrics

イロン 不得 とくほう 不良 とう

э

Classical Test Theory

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement

Parallel Tests

References

Table: Responses to a Self-Esteem Questionnaire

-	Respondent	Observed Score (X_o)		True Score (X_t)		Error Score (X_e)
-	Ashley	120	=	130	+	-10
	Bob	145	=	120	+	25
	Carl	95	=	110	+	-15
	Denise	85	=	100	+	–15
	Eric	115	=	90	+	25
	Felicia	70	=	80	+	-10
	Mean	105.00		105		0
	Variance	608.33		291.67		316.67
	Std. Dev	24.66		17.08		17.80
	Reliability	$R_{xx} = .48$		$r_{ot} = .69$ $r^2 = .48$		$r_{oe} = .72$ $r^2 = .52$
		$r_{te} = .00$		$r_{ot} = .40$		$r_{oe} = .52$

イロト 不得 とくほ とくほとう

ъ

mark.hurlstone@uwa.edu.au Psychological Measurement

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four

Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement

- Parallel Tests
- References

- The reliability coefficient *R_{xx}* does not directly reflect the size of measurement error associated with a test
- By contrast, the standard deviation of error scores tell us in "test score units" the average size of error scores we can expect to find when a test is administered to a group of people
- For our example, the standard deviation of error scores is 17.80
- The standard deviation of error is also known as the standard error of measurement and is a crucially important concept in psychometrics

イロン 不得 とくほう 不良 とう

э

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement

_ .

- The standard error of measurement *se_m* is related to the reliability coefficient *R_{xx}*
- If we know the value of R_{xx} and the standard deviation of observed scores σ_a then we can calculate se_m as follows:

$$se_m = \sigma_o \sqrt{1 - R_{xx}} \tag{16}$$

イロト 不得 とくほと くほとう

3

$$se_m = 24.66\sqrt{1 - .48} = 24.66(.72) = 17.80$$

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3

Standard Error of Measurement

5 (

- The standard error of measurement *se_m* is related to the reliability coefficient *R_{xx}*
- If we know the value of R_{xx} and the standard deviation of observed scores σ_o then we can calculate se_m as follows:

$$se_m = \sigma_o \sqrt{1 - R_{xx}} \tag{16}$$

イロト 不得 とくほと くほとう

3

$$se_m = 24.66\sqrt{1 - .48} = 24.66(.72) = 17.80$$
Classical Test Theory

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement

Parallel Tests

References

Table: Responses to a Self-Esteem Questionnaire

Respor	ndent	Observed Score (X_o)		True Score (X_t)		Error Score (X_e)
Ashley		120	=	130	+	-10
Bob		145	=	120	+	25
Carl		95	=	110	+	–15
Denise		85	=	100	+	–15
Eric		115	=	90	+	25
Felicia		70	=	80	+	-10
Mean		105.00		105		0
Varianc	e	608.33		291.67		316.67
Std. De	ev.	24.66		17.08		17.80
Reliabil	lity	$R_{xx} = .48$		$r_{ot} = .69$		$r_{oe} = .72$
		$r_{te} = .00$		$r_{ot}^2 = .48$		$r_{oe}^2 = .52$

イロト 不得 トイヨト 不良 トー

ъ

mark.hurlstone@uwa.edu.au Psychological Measurement

Standard Error of Measurement

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3

Standard Error of Measurement

5 (

- The standard error of measurement *se_m* is related to the reliability coefficient *R_{xx}*
- If we know the value of R_{xx} and the standard deviation of observed scores σ_o then we can calculate se_m as follows:

$$se_m = \sigma_o \sqrt{1 - R_{xx}} \tag{16}$$

イロト 不得 とくほと くほとう

3

For our example:

$$se_m = 24.66\sqrt{1 - .48} = 24.66(.72) = 17.80$$

Standard Error of Measurement

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3

Standard Error of Measurement

5 (

- The standard error of measurement *se_m* is related to the reliability coefficient *R_{xx}*
- If we know the value of R_{xx} and the standard deviation of observed scores σ_o then we can calculate se_m as follows:

$$se_m = \sigma_o \sqrt{1 - R_{xx}} \tag{16}$$

イロト 不得 とくほと くほとう

3

For our example:

$$se_m = 24.66\sqrt{1 - .48} = 24.66(.72) = 17.80$$

Classical Test Theory

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement

Parallel Tests

References

Table: Responses to a Self-Esteem Questionnaire

-	Respondent	Observed Score (X_o)		True Score (X_t)		Error Score (X_e)
-	Ashley	120	=	130	+	-10
	Bob	145	=	120	+	25
	Carl	95	=	110	+	-15
	Denise	85	=	100	+	–15
	Eric	115	=	90	+	25
	Felicia	70	=	80	+	-10
	Mean	105.00		105		0
	Variance	608.33		291.67		316.67
	Std. Dev	24.66		17.08		17.80
	Reliability	$R_{xx} = .48$		$r_{ot} = .69$ $r^2 = .48$		$r_{oe} = .72$ $r^2 = .52$
		$r_{te} = .00$		$r_{ot} = .40$		$r_{oe} = .52$

イロト 不得 トイヨト 不良 トー

ъ

mark.hurlstone@uwa.edu.au Psychological Measurement

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1 Conception 2 Conception 3

Standard Error of Measurement

Parallel Tests

References

- Given that we do not know people's true scores or the degree of measurement error, reliability cannot be estimated directly
 - However estimates can be obtained by other means
 - One way is by constructing a so called parallel test
 - For example, we could construct two different measures of self esteem

イロト 不得 とくほ とくほ とう

ъ

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

- Four
- Conception of Reliability
- Conception 1
- Conception 3
- Conception 4
- Standard Error of Measurement
- Parallel Tests

References

- To qualify as a parallel test, the previous assumptions of CTT must be satisfied for each test, and the following must be true:
 - participants true scores for one test must be exactly equal to their true scores on the other test—known as "tau equivalence"
 - 2 the tests must have the same level of error variance

イロト 不同 トイヨト イヨト

э

• In other words, the observed scores on both tests should have the same mean and standard deviation

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conception of Reliability

Conception 2

Conception 3

Standard Error of Measurement

Parallel Tests

References

- If two tests are parallel, we can compute a correlation between the scores on the two tests
- According to CTT, the correlation between parallel test scores is equal to the reliability (see the textbook for a proof)
- The parallel test assumption therefore provides an important bridge to the real world of testing

イロト イポト イヨト イヨト

 It allows us to use procedures to estimate reliability in real-life testing situations

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four Conceptions of Reliability Conception 1

Conception 2 Conception 3 Conception 4

Standard Error of Measurement

Parallel Tests

References

- In practice, parallel tests are difficult to come by
- Two measures of the same construct rarely have the same mean and standard deviation—a necessary pre-requisite for parallel tests
- Accordingly, researchers often use a measure of internal consistency reliability known as Cronbach's α
- We will discuss this—and other methods of generating empirical estimates of reliability—in the second half of this lecture

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

э

References

Psychological Measurement

mark.hurlstone @uwa.edu.au

Reliability

Classical Test Theory Observed Scores, True Scores, & Error Variance in Scores

Four

Conceptions of Reliability Conception 1 Conception 2 Conception 3 Conception 4

Standard Error of Measurement

Parallel Tests

References

Furr, M. R., & Bacharach, V. R. (2014; Chapter 5). Psychometrics: An Introduction (second edition). Sage.

イロト 不得 とくほ とくほ とう

э