Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

Reliability: Empricial Estimates

PSYC3302: Psychological Measurement and Its Applications

Mark Hurlstone Univeristy of Western Australia

Weeks 3 & 4

イロト 不得 とくほ とくほ とう

Learning Objectives

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

- 2. Test-Retest
- Internal Consistency
 Split-Half Reliability
 Coefficient α
 Standardised Coefficient α
- Factors Affecting Reliability
- References

- Overview of three methods for estimating reliability from *real* data:
 - Alternate-Forms Reliability
 - 2 Test-Retest Reliability
 - Internal Consistency Reliability
 - Split-Halves Reliability
 - 🦻 Cronbach's lpha
 - $rac{1}{8}$ Standardised Cronbach's lpha
 - 🚱 KR-20

Empirical Reliability Estimates

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- So far, we have focused on the theoretical basis of reliability in terms of CTT
- We will now focus on how observed (empirical) test scores can be used to *estimate* score reliabilities
- We will consider several different methods for generating empirical estimates of reliability
- Each is grounded in the notion of parallel tests—providing a direct link to CTT
- The methods differ in terms of their assumptions and the types of data they lend themselves to

イロト イポト イヨト イヨト 二日

Three Methods For Generating Empirical Reliability Estimates

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternat Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

Alternate-Forms Reliability

- 2 Test-Retest Reliability
- Internal Consistency Reliability

イロト イポト イヨト イヨト

Three Methods For Generating Empirical Reliability Estimates

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

- 1. Alternat Forms
- 2. Test-Retest
- Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KB-20
- Factors Affecting Reliability
- References

1 Alternate-Forms Reliability

- 2 Test-Retest Reliability
- Internal Consistency Reliability

イロト イポト イヨト イヨト

Alternate-Forms Reliability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- This involves obtaining scores from two different forms of a test with the same group of people
- An example of the use of this type of reliability would be a "makeup" test
- The correlation between test scores on the two forms is an index of reliability known as the *coefficient of equivalence*

イロト 不同 トイヨト イヨト

Alternate-Forms Reliability

Psychological Measurement

mark.hurlstone @uwa.edu.au

- Empirical Estimates
- 1. Alternate-Forms
- 2. Test-Retest
- Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20
- Factors Affecting Reliability
- References

- To interpret a correlation between alternate forms as an estimate of reliability the two test forms must be parallel—known as *parallel forms*
- Recall from our discussion of parallel tests that this requires that both forms:
 - 1 measure the same set of true scores
 - 2 have the same amount of error variance
- Thus, parallel forms of a test exist when, for each form, the observed scored means and variances are the same

イロト イポト イヨト イヨト

Alternate-Forms Reliability: Different Content Problem

Psychological Measurement

mark.hurlstone @uwa.edu.au

- Empirical Estimates
- 1. Alternate-Forms
- 2. Test-Retest
- Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20
- Factors Affecting Reliability
- References

- Two forms of a test may ostensibly meet the requirements of CTT, but not measure the same psychological attribute
- This is because different forms will necessarily possess different content
- For example, two versions of a self-esteem questionnaire may tap different components of this construct:
 - socially derived self-esteem vs. nonsocial self-esteem

ヘロン 人間 とくほ とくほ とう

ъ

 Thus, respondents' true scores on one form are not strictly equal to their true scores on the second form—the tests are not "truly" parallel

Psychological Measurement

mark.hurlstone @uwa.edu.au

- Empirical Estimates
- 1. Alternate-Forms
- 2. Test-Retest
- Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20
- Factors Affecting Reliability
- References

- According to CTT error scores on one form of a test should be uncorrelated with error scores on a second form of a test
- However, if two forms of a test are completed in close succession there may be *carryover effects*
- For example, a respondent's memory for test content, attitudes, or mood state might similarly affect performance on both forms of a test
- This could cause the error scores on the two forms to be correlated with one another—violating the parallel test assumption

ヘロン 人間 とくほ とくほ とう

ъ

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- Let's consider another "all-knowing" example to illustrate the problem of carryover effects
- For sake of demonstration, we must once again pretend that we know people's true scores and error scores

ъ

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 1 Split-Half Reliability
 2 Coefficient α
 3 Standardised Coefficient α
 4 KR-20

Factors Affecting Reliability

References

Table: Example of Carryover Effects on Alternate Forms Estimate of Reliability

Respondent			Form 1		Form 2						
	Observed Score (X ₀₁)		True Score (X _{t1})		Error Score (X _{e1})	Observ Score (X _{o2})	red	True Score (X _{t2})		Error Score (X _{e2})	
1	14	=	15	+	-1	13	=	15	+	-2	
2	17	=	14	+	3	17	=	14	+	3	
3	11	=	13	+	-2	12	=	13	+	-1	
4	10	=	12	+	-2	11	=	12	+	-1	
5	14	=	11	+	3	14	=	11	+	3	
6	9	=	10	+	-1	8	=	10	+	-2	
Mean	12.5	=	12.5		0	12.5	=	12.5		0	
Variance	7.58	=	2.92		4.67	7.58	=	2.92		4.67	

イロト 不得 とくほ とくほ とう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- These hypothetical data meet various assumptions of CTT and parallel tests:
 - the observed scores on each form are the sum of the true scores and error scores
 - the true scores are the same for the two forms
 - the error scores for each form sum to 0 and have the same variance

イロト イポト イヨト イヨト

- true scores are uncorrelated with error scores
- Accordingly, the means and variances of observed scores are identical for the two forms

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- These hypothetical data meet various assumptions of CTT and parallel tests:
 - the observed scores on each form are the sum of the true scores and error scores
 - the true scores are the same for the two forms
 - the error scores for each form sum to 0 and have the same variance

イロト イポト イヨト イヨト

- true scores are uncorrelated with error scores
- Accordingly, the means and variances of observed scores are identical for the two forms

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 1 Split-Half Reliability
 2 Coefficient α
 3 Standardised Coefficient α
 4 KR-20

Factors Affecting Reliability

References

Table: Example of Carryover Effects on Alternate Forms Estimate of Reliability

Respondent			Form 1		Form 2						
	Observed Score (X _{o1})	d	True Score (X _{t1})		Error Score (X_{e1})	Observ Score (X _{o2})	ved	True Score (X _{t2})		Error Score (X _{e2})	
1	14	=	15	+	-1	13	=	15	+	-2	
2	17	=	14	+	3	17	=	14	+	3	
3	11	=	13	+	-2	12	=	13	+	-1	
4	10	=	12	+	-2	11	=	12	+	-1	
5	14	=	11	+	3	14	=	11	+	3	
6	9	=	10	+	-1	8	=	10	+	-2	
Mean	12.5	=	12.5		0	12.5	=	12.5		0	
Variance	7.58	=	2.92		4.67	7.58	=	2.92		4.67	

イロト 不得 とくほ とくほ とう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 1 Split-Half Reliability
 2 Coefficient α
 3 Standardised Coefficient α
 4 KR-20

Factors Affecting Reliability

References

Table: Example of Carryover Effects on Alternate Forms Estimate of Reliability

Respondent			Form 1		Form 2						
	Observed Score (X ₀₁)		True Score (X _{t1})		Error Score (X _{e1})	Observ Score (X _{o2})	red	True Score (X _{t2})		Error Score (X _{e2})	
1	14	=	15	+	-1	13	=	15	+	-2	
2	17	=	14	+	3	17	=	14	+	3	
3	11	=	13	+	-2	12	=	13	+	-1	
4	10	=	12	+	-2	11	=	12	+	-1	
5	14	=	11	+	3	14	=	11	+	3	
6	9	=	10	+	-1	8	=	10	+	-2	
Mean	12.5	=	12.5		0	12.5	=	12.5		0	
Variance	7.58	=	2.92		4.67	7.58	=	2.92		4.67	

イロト 不得 とくほ とくほ とう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- These hypothetical data meet various assumptions of CTT and parallel tests:
 - the observed scores on each form are the sum of the true scores and error scores
 - the true scores are the same for the two forms
 - the error scores for each form sum to 0 and have the same variance

イロト イポト イヨト イヨト

- true scores are uncorrelated with error scores
- Accordingly, the means and variances of observed scores are identical for the two forms

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- These hypothetical data meet various assumptions of CTT and parallel tests:
 - the observed scores on each form are the sum of the true scores and error scores
 - the true scores are the same for the two forms
 - the error scores for each form sum to 0 and have the same variance

イロト イポト イヨト イヨト

- true scores are uncorrelated with error scores
- Accordingly, the means and variances of observed scores are identical for the two forms

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 1 Split-Half Reliability
 2 Coefficient α
 3 Standardised Coefficient α
 4 KR-20

Factors Affecting Reliability

References

Table: Example of Carryover Effects on Alternate Forms Estimate of Reliability

Respondent			Form 1		Form 2						
	Observed Score (X ₀₁)		True Score (X _{t1})		Error Score (X_{e1})	Observ Score (X _{o2})	red	True Score (X _{t2})		Error Score (X _{e2})	
1	14	=	15	+	-1	13	=	15	+	-2	
2	17	=	14	+	3	17	=	14	+	3	
3	11	=	13	+	-2	12	=	13	+	-1	
4	10	=	12	+	-2	11	=	12	+	-1	
5	14	=	11	+	3	14	=	11	+	3	
6	9	=	10	+	-1	8	=	10	+	-2	
Mean	12.5	=	12.5		0	12.5	=	12.5		0	
Variance	7.58	=	2.92		4.67	7.58	=	2.92		4.67	

イロト 不得 とくほ とくほ とう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- These hypothetical data meet various assumptions of CTT and parallel tests:
 - the observed scores on each form are the sum of the true scores and error scores
 - the true scores are the same for the two forms
 - the error scores for each form sum to 0 and have the same variance

イロト イポト イヨト イヨト

- true scores are uncorrelated with error scores
- Accordingly, the means and variances of observed scores are identical for the two forms

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- These hypothetical data meet various assumptions of CTT and parallel tests:
 - the observed scores on each form are the sum of the true scores and error scores
 - the true scores are the same for the two forms
 - the error scores for each form sum to 0 and have the same variance

イロト イポト イヨト イヨト

- true scores are uncorrelated with error scores
- Accordingly, the means and variances of observed scores are identical for the two forms

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 1 Split-Half Reliability
 2 Coefficient α
 3 Standardised Coefficient α
 4 KR-20

Factors Affecting Reliability

References

Table: Example of Carryover Effects on Alternate Forms Estimate of Reliability

Respondent			Form 1		Form 2						
	Observed Score (X ₀₁)		True Score (X _{t1})		Error Score (X _{e1})	Observ Score (X _{o2})	red	True Score (X _{t2})		Error Score (X _{e2})	
1	14	=	15	+	-1	13	=	15	+	-2	
2	17	=	14	+	3	17	=	14	+	3	
3	11	=	13	+	-2	12	=	13	+	-1	
4	10	=	12	+	-2	11	=	12	+	-1	
5	14	=	11	+	3	14	=	11	+	3	
6	9	=	10	+	-1	8	=	10	+	-2	
Mean	12.5	=	12.5		0	12.5	=	12.5		0	
Variance	7.58	=	2.92		4.67	7.58	=	2.92		4.67	

イロト 不得 とくほ とくほ とう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- These hypothetical data meet various assumptions of CTT and parallel tests:
 - the observed scores on each form are the sum of the true scores and error scores
 - the true scores are the same for the two forms
 - the error scores for each form sum to 0 and have the same variance

イロト イポト イヨト イヨト

- true scores are uncorrelated with error scores
- Accordingly, the means and variances of observed scores are identical for the two forms

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- These hypothetical data meet various assumptions of CTT and parallel tests:
 - the observed scores on each form are the sum of the true scores and error scores
 - · the true scores are the same for the two forms
 - the error scores for each form sum to 0 and have the same variance

イロト イポト イヨト イヨト

- true scores are uncorrelated with error scores
- Accordingly, the means and variances of observed scores are identical for the two forms

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- These hypothetical data meet various assumptions of CTT and parallel tests:
 - the observed scores on each form are the sum of the true scores and error scores
 - the true scores are the same for the two forms
 - the error scores for each form sum to 0 and have the same variance

イロト イポト イヨト イヨト

- true scores are uncorrelated with error scores
- Accordingly, the means and variances of observed scores are identical for the two forms

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 1 Split-Half Reliability
 2 Coefficient α
 3 Standardised Coefficient α
 4 KR-20

Factors Affecting Reliability

References

Table: Example of Carryover Effects on Alternate Forms Estimate of Reliability

Respondent			Form 1		Form 2						
	Observed Score (X _{o1})	ł	True Score (X _{t1})		Error Score (X_{e1})	Observ Score (X _{o2})	/ed	True Score (X _{t2})		Error Score (X _{e2})	
1	14	=	15	+	-1	13	=	15	+	-2	
2	17	=	14	+	3	17	=	14	+	3	
3	11	=	13	+	-2	12	=	13	+	-1	
4	10	=	12	+	-2	11	=	12	+	-1	
5	14	=	11	+	3	14	=	11	+	3	
6	9	=	10	+	-1	8	=	10	+	-2	
Mean	12.5	=	12.5		0	12.5	=	12.5		0	
Variance	7.58	=	2.92		4.67	7.58	=	2.92		4.67	

イロト 不得 とくほ とくほ とう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 2.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- From our "all-knowing" vantage point, we can calculate the reliability of the two forms
- We can do this using the ratio of true score variance to observed score variance:
- Reliability for Form 1:

$$R_{xx} = \frac{2.92}{7.58} = .38$$

Reliability for Form 2:

$$R_{xx} = \frac{2.92}{7.58} = .38$$

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- From our "all-knowing" vantage point, we can calculate the reliability of the two forms
- We can do this using the ratio of true score variance to observed score variance:
- Reliability for Form 1:

$$R_{xx} = \frac{2.92}{7.58} = .38$$

Reliability for Form 2:

$$R_{xx} = \frac{2.92}{7.58} = .38$$

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 1 Split-Half Reliability
 2 Coefficient α
 3 Standardised Coefficient α
 4 KR-20

Factors Affecting Reliability

References

 Table: Example of Carryover Effects on Alternate Forms Estimate

 of Reliability

Respondent			Form 1		Form 2						
	Observed Score (X _{o1})	ł	True Score (X _{t1})		Error Score (X_{e1})	Observ Score (X _{o2})	/ed	True Score (X _{t2})		Error Score (X _{e2})	
1	14	=	15	+	-1	13	=	15	+	-2	
2	17	=	14	+	3	17	=	14	+	3	
3	11	=	13	+	-2	12	=	13	+	-1	
4	10	=	12	+	-2	11	=	12	+	-1	
5	14	=	11	+	3	14	=	11	+	3	
6	9	=	10	+	-1	8	=	10	+	-2	
Mean	12.5	=	12.5		0	12.5	=	12.5		0	
Variance	7.58	=	2.92		4.67	7.58	=	2.92		4.67	

イロト 不得 とくほ とくほ とう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- From our "all-knowing" vantage point, we can calculate the reliability of the two forms
- We can do this using the ratio of true score variance to observed score variance:
- Reliability for Form 1:

$$R_{xx} = \frac{2.92}{7.58} = .38$$

Reliability for Form 2:

$$R_{xx} = \frac{2.92}{7.58} = .38$$

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

- 2. Test-Retest
- Internal Consistency
 Split-Half Reliability
 Coefficient α
 Standardised Coefficient α
 4 KR-20
- Factors Affecting Reliability
- References

- Unfortunately, the data violate an important assumption of CTT
- Error is assumed to occur at random—the error scores on one form should be uncorrelated with error scores on the second form
- The error scores on the two forms are, in fact, very strongly positively correlated: *r*_{e1e2} = .93
- This correlation could be the result of carryover effects, such as mood state or memory

イロト イポト イヨト イヨト

-

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- The correlation between observed scores on two different forms of a test is a measure of reliability known as *alternate-forms reliability*
- The alternate-forms correlation for the two forms is r_{o1o2} = .96
- The reliability is therefore considerably greater than its true value (*R*_{xx} = .38), meaning it is an inaccurate estimate
- The inflated estimate of reliability is brought about due to the strong correlation between error scores on the two forms of the test

イロン 不得 とくほ とくほう

Alternate-Forms Reliability: Bottom Line

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- It is not enough that two forms of a test have the same observed score means and variances
- We also need to be very confident that the tests are in fact measuring the same psychological attribute
- If both of these conditions are satisfied then we can reasonably use the correlation between two forms as an estimate of reliability
- However, we must also be mindful of carryover effects from one form of a test to another

イロト 不同 トイヨト イヨト

Three Methods For Generating Empirical Reliability Estimates

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KB: 20

Factors Affecting Reliability

References

Alternate-Forms Reliability

- 2 Test-Retest Reliability
- Internal Consistency Reliability

イロト 不得下 不足下 不足下

Three Methods For Generating Empirical Reliability Estimates

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate-Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KB-20

Factors Affecting Reliability

References

Alternate-Forms Reliability

- 2 Test-Retest Reliability
- Internal Consistency Reliability

イロト 不得下 不足下 不足下

Test-Retest Reliability Estimates

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 2. Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- This involves administering the same test to the same people on two different occasions
- An estimate of reliability is obtained by correlating respondents test-retest scores
- This method overcomes the "different-content" problem associated with the alternative forms method
- It is appropriate when measuring the reliability of a test that purports to measure a relatively stable psychological characteristic—e.g., intelligence, personality traits

イロト イポト イヨト イヨト

ъ

Test-Retest Reliability Estimates

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

 Alternate Forms

2. Test-Retest

 3. Internal

 Consistency

 3.1 Split-Half

 Reliability

 3.2 Coefficient α

 3.3 Standardised

 Coefficient α

 3.4 KR-20

Factors Affecting Reliability

References

- The test-retest method depends on the same assumptions as the parallel forms method:
 - people's true scores should not change between the two testing occasions
 - 2 the error variances of the two tests should be identical

イロト 不同 トイヨト イヨト

э

The observed test-retest scores should therefore have the same means and variances

Test-Retest Reliability: Equality of Error Variances

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 2.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- The "equality of error variances" assumption is not unreasonable if care is taken in the test administration process
- Efforts must be undertaken to control for extraneous variables that might differ from test to retest
- For example, we would want to control:
 - the temperature and noise of the test environment

- the time of day the testing took place
- the experimenter administering the test

Test-Retest Reliability: True Score Stability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 2.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

 The "true score stability" assumption is a harder constraint to meet

- The respondent's levels of a psychological attribute may change between test and retest
- We can identify at least three different threats to this assumption:
 - construct instability
 - 2 length of test-retest interval
 - 3 developmental changes

Test-Retest Reliability: True Score Stability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 2.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

 The "true score stability" assumption is a harder constraint to meet

イロト イポト イヨト イヨト

- The respondent's levels of a psychological attribute may change between test and retest
- We can identify at least three different threats to this assumption:

construct instability

- 2 length of test-retest interval
- 3 developmental changes

Test-Retest Reliability: Construct Instability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 2.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- Some psychological attributes, like intelligence and personality, are assumed to be relatively stable–known as psychological traits
- Other psychological attributes, like state anxiety (anxiety felt at the moment) or mood, are assumed to fluctuate over time—known as *psychological states*
- Test-retest reliability is not appropriate when evaluating the reliability of a test that is assumed to measure psychological states
- In these circumstances, respondents' true scores are likely to change between test and retest

Test-Retest Reliability: True Score Stability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 2.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

 The "true score stability" assumption is a harder constraint to meet

イロト イポト イヨト イヨト

- The respondent's levels of a psychological attribute may change between test and retest
- We can identify at least three different threats to this assumption:

construct instability

- 2 length of test-retest interval
- 3 developmental changes

Test-Retest Reliability: True Score Stability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 2.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

 The "true score stability" assumption is a harder constraint to meet

- The respondent's levels of a psychological attribute may change between test and retest
- We can identify at least three different threats to this assumption:
 - construct instability
 - 2 length of test-retest interval
 - 3 developmental changes

Test-Retest Reliability: Length of Test-Retest Interval

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- With the passage of time people learn new things, forget some things, and acquire new skills
- The longer the test-retest interval, the more likely that changes in the psychological attribute being measured will occur
- True scores are therefore more likely to change with long (years) compared to short (weeks or days) test-retest intervals
- However, very short test-retest intervals (hours) can yield carryover and contamination effects (see earlier)
- Most test-retest analyses occur over a period of 2-8 weeks

Test-Retest Reliability: True Score Stability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 2.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

 The "true score stability" assumption is a harder constraint to meet

- The respondent's levels of a psychological attribute may change between test and retest
- We can identify at least three different threats to this assumption:
 - construct instability
 - 2 length of test-retest interval
 - 3 developmental changes

Test-Retest Reliability: True Score Stability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 2.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

 The "true score stability" assumption is a harder constraint to meet

- The respondent's levels of a psychological attribute may change between test and retest
- We can identify at least three different threats to this assumption:
 - construct instability
 - 2 length of test-retest interval
 - 3 developmental changes

Test-Retest Reliability: Developmental Changes

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 2.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- The stability assumption can also be compromised if the testing occurs during a period of great developmental change
- This is a particular problem when testing the cognitive skills (e.g., maths, reading) and knowledge of children
- These can develop rapidly, resulting in changes in children's true scores even over relatively brief test-retest intervals
- Such developmental changes prevent the use of a test-retest correlation to measure reliability

Test-Retest Reliability: Bottom Line

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- Test-retest reliability depends on the assumption that true scores remain stable across the test-retest interval
- For this reason the test-retest correlation is sometimes known as the *coefficient of stability*
- If the true scores remain stable during the test-retest interval, then the reliability coefficient reflects one thing—the degree to which measurement error affected test scores
- However, the problem is that we we can never be sure if this assumption is satisfied

イロト イポト イヨト イヨト

ъ

Test-Retest Reliability: Bottom Line

Psychological Measurement

mark.hurlstone @uwa.edu.au

- Empirical Estimates
- 1. Alternate Forms

2. Test-Retest

- Internal Consistency
 Split-Half Reliability
 2. Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20
- Factors Affecting Reliability
- References

- If the true scores change during the test-retest interval, then the reliability coefficient will reflect two factors:
 - the degree of measurement error
 the amount of change in true scores
- In this case, an imperfect test-retest correlation indicates the combined effect of measurement error and true score instability
- The possibility that true scores might have changed in the test-retest interval renders it difficult to interpret a non-perfect test-retest reliability coefficient

Interim Summary: Alternate-Forms and Test-Retest Reliability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- There are several practical problems associated with both alternate-forms and test-retest reliability
- They require at least two tests to be administered which can be expensive, time consuming, and difficult
- Several assumptions must be made if the correlation between tests is to be interpreted as a measure of reliability
- These assumptions may not be valid in some, or perhaps many cases
- Accordingly, the alternate-forms and test-retest methods are of limited utility

ヘロン 人間 とくほ とくほ とう

ъ

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency

3.1 Split-Half Reliability
3.2 Coefficient α
3.3 Standardised Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- An estimate of the reliability of a test can be obtained without developing more than one form of a test or testing respondents on more than one occasion
- This type of reliability estimate involves evaluating the internal consistency of test items
- This third approach to reliability is thus known as *internal* consistency reliability
- It is used when items on a scale are summed to produce a composite test score

イロト 不得 とくほ とくほとう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency

3.1 Split-Half Reliability
3.2 Coefficient α
3.3 Standardised Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

• There are two factors that determine the internal consistency reliability of test scores:

The consistency among parts of a test:

- if the test items are strongly correlated with each other, the test is likely to be reliable
- 2 The test's length:
 - all things being equal, a longer test will be more reliable than a shorter test

イロト イポト イヨト イヨト

ъ

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency

3.1 Split-Half Reliability
3.2 Coefficient α
3.3 Standardised Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- We will consider four methods of estimating internal consistency:
 - Split-Half Reliability
 - 2 Coefficient α
 - **3** Standardised Coefficient α
 - 4 KR-20

э

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency

3.1 Split-Half Reliability
3.2 Coefficient α
3.3 Standardised Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

• We will consider four methods of estimating internal consistency:

Split-Half Reliability

- 2 Coefficient α
- **3** Standardised Coefficient α
- 4 KR-20

э

Split-Half Reliability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- This method was developed by Charles Spearman in the 1920s
- It's a measure of reliability obtained by correlating two pairs of scores obtained from equivalent halves of a single test
- There are three steps to computing the split-half reliability:
 - Divide the test into equal halves
 - 2 Calculate the correlation between scores on the two halves of the test

イロト イポト イヨト イヨト

ъ

- Adjust the half-test reliability using the
 - Spearman-Brown formula

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

 In Spearman's original procedure, odd items on a test are assigned to one sub-test and even items are assigned to the other sub-test

イロト 不同 トイヨト イヨト

ъ

- This is known as *odd-even reliability*
- Here's an example ...

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistenc 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

Table: Example of Internal Consistency Method of Estimating Reliability

		Iten	IS			Split	-Half 1	Split-Half 2	
Person	1	2	3	4	Total	"Odd"	"Even"	1 and 4	2 and 4
1	4	4	5	4	17	9	8	8	9
2	5	2	4	2	13	9	4	7	6
3	5	4	2	2	13	7	6	7	6
4	2	3	1	2	8	3	5	4	4
Mean Variance	4 1.5	3.25 0.6875	3 2.5	2.5 .75	12.75 10.1875	7 6	5.75 2.1875	6.5 2.25	6.25 3.1875

イロト 不同 トイヨト イヨト

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

Table: Example of Internal Consistency Method of Estimating Reliability

		Iten	ıs			Split	-Half 1	Split-Half 2	
Person	1	2	3	4	Total	"Odd"	"Even"	1 and 4	2 and 4
1	4	4	5	4	17	9	8	8	9
2	5	2	4	2	13	9	4	7	6
3	5	4	2	2	13	7	6	7	6
4	2	3	1	2	8	3	5	4	4
Mean Variance	4 1.5	3.25 0.6875	3 2.5	2.5 .75	12.75 10.1875	7 6	5.75 2.1875	6.5 2.25	6.25 3.1875

イロト 不同 トイヨト イヨト

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

Table: Example of Internal Consistency Method of Estimating Reliability

	Items					Split	-Half 1	Split-Half 2	
Person	1	2	3	4	Total	"Odd"	"Even"	1 and 4	2 and 4
1	4	4	5	4	17	9	8	8	9
2	5	2	4	2	13	9	4	7	6
3	5	4	2	2	13	7	6	7	6
4	2	3	1	2	8	3	5	4	4
Mean Variance	4 1.5	3.25 0.6875	3 5 2.5	2.5 .75	12.75 10.1875	7 6	5.75 2.1875	6.5 2.25	6.25 3.1875

イロト 不同 トイヨト イヨト

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

Table: Example of Internal Consistency Method of Estimating Reliability

		Iten	าร			Split-Half 1		Split-Half 2	
Person	1	2	3	4	Total	"Odd"	"Even"	1 and 4	2 and 4
1	4	4	5	4	17	9	8	8	9
2	5	2	4	2	13	9	4	7	6
3	5	4	2	2	13	7	6	7	6
4	2	3	1	2	8	3	5	4	4
Mean Variance	4 1.5	3.25 0.6875	3 5 2.5	2.5 .75	12.75 10.1875	7 6	5.75 2.1875	6.5 2.25	6.25 3.1875

イロト 不同 トイヨト イヨト

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- In the second step, we calculate the split-half correlation between scores on the two halves of the test
- The odd-even split-half correlation for these data is $r_{hh} = .276$
- However, we can't use this as an estimate of reliability
- This is because it is an estimate of the reliability of a test that has been halved in length

イロト 不同 とくほ とくほ とう

э

· We want to know the reliability of the full test

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- In the second step, we calculate the split-half correlation between scores on the two halves of the test
- The odd-even split-half correlation for these data is $r_{hh} = .276$
- However, we can't use this as an estimate of reliability
- This is because it is an estimate of the reliability of a test that has been halved in length

イロト 不同 とくほ とくほ とう

э

· We want to know the reliability of the full test

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistenc 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

Table: Example of Internal Consistency Method of Estimating Reliability

		Iten	าร			Split-Half 1		Split-Half 2	
Person	1	2	3	4	Total	"Odd"	"Even"	1 and 4	2 and 4
1	4	4	5	4	17	9	8	8	9
2	5	2	4	2	13	9	4	7	6
3	5	4	2	2	13	7	6	7	6
4	2	3	1	2	8	3	5	4	4
Mean Variance	4 1.5	3.25 0.6875	3 5 2.5	2.5 .75	12.75 10.1875	7 6	5.75 2.1875	6.5 2.25	6.25 3.1875

イロト 不得 とくほ とくほ とう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- In the second step, we calculate the split-half correlation between scores on the two halves of the test
- The "odd-even" split-half correlation is r_{hh} = .276
- However, we can't use this as an estimate of reliability
- This is because it is an estimate of the reliability of a test that has been halved in length

イロン 不得 とくほう 不良 とう

э

 As noted earlier, the reliability of a test is affected by its length, so the split-half correlation will underestimate the reliability of the complete test

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- In the second step, we calculate the split-half correlation between scores on the two halves of the test
- The "odd-even" split-half correlation is r_{hh} = .276
- However, we can't use this as an estimate of reliability
- This is because it is an estimate of the reliability of a test that has been halved in length

イロン 不得 とくほう 不良 とう

э

 As noted earlier, the reliability of a test is affected by its length, so the split-half correlation will underestimate the reliability of the complete test

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

• To determine the reliability of the full test, we can use the Spearman-Brown Prophecy formula:

$$R_{xx} = \frac{2 r_{hh}}{1 + r_{hh}}.$$
(17)

イロト イポト イヨト イヨト

э

• For our "odd-even" split-half example:

$$R_{xx} = \frac{2(.276)}{1 + .276} = \frac{.552}{1.276} = .433.$$

Split-Half Reliability: Assumptions

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternat Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- Like the alternate-forms and test-retest reliability methods, the legitimacy of the split-half approach rests on the assumption that the two halves are parallel tests
- The two halves should therefore have equal means and variances
- However, in our example, the two halves do not meet the criteria for being parallel
- This means our split-half estimate of reliability may be inaccurate

Split-Half Reliability: Assumptions

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternat Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- Like the alternate-forms and test-retest reliability methods, the legitimacy of the split-half approach rests on the assumption that the two halves are parallel tests
- The two halves should therefore have equal means and variances
- However, in our example, the two halves do not meet the criteria for being parallel
- This means our split-half estimate of reliability may be inaccurate

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistenc 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

Table: Example of Internal Consistency Method of Estimating Reliability

		Iten	ns			Split-Half 1		Split-Half 2	
Person	1	2	3	4	Total	"Odd"	"Even"	1 and 4	2 and 4
1	4	4	5	4	17	9	8	8	9
2	5	2	4	2	13	9	4	7	6
3	5	4	2	2	13	7	6	7	6
4	2	3	1	2	8	3	5	4	4
Mean Variance	4 1.5	3.25 0.6875	3 5 2.5	2.5 .75	12.75 10.1875	7 6	5.75 2.1875	6.5 2.25	6.25 3.1875

イロト 不得 とくほ とくほ とう

Split-Half Reliability: Assumptions

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- Like the alternate-forms and test-retest reliability methods, the legitimacy of the split-half approach rests on the assumption that the two halves are parallel tests
- The two halves should therefore have equal means and variances
- However, the two halves do not meet the criteria for being parallel

イロト イポト イヨト イヨト

ъ

• This means our split-half estimate of reliability may be inaccurate

Split-Half Reliability: Problem of Multiple Splits

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- A serious problem with the split-half method is that there are multiple ways of randomly splitting a test into two halves
- The results can therefore be a product of the way the data were split
- For example, suppose we split the data so items 1 and 4 appeared in one half of a test, and items 2 and 3 appeared in the other half
- This yields a split-half correlation of $r_{hh} = .89$
- With the Spearman-Brown adjustment, $R_{xx} = .94$:

$$R_{xx} = \frac{2(.89)}{1+.89} = .94 \,.$$

イロン 不得 とくほう 不良 とう

э

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- We will now consider methods for estimating internal consistency reliability based on *inter-item consistency*
- These so-called "item-level" approaches assume that each item on a test is itself a sub-test (like the split halves are considered sub-tests in the split-half method)
- Item-level methods examine the degree of correlation among all items on a scale to provide an estimate of reliability

イロト イポト イヨト イヨト

 This overcomes the "multiple-split problem" of split-half reliability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

• We will consider four methods of estimating internal consistency:

Split-Half Reliability

- 2 Coefficient α
- **3** Standardised Coefficient α
- 4 KR-20

э

Internal Consistency Reliability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- We will consider four methods of estimating internal consistency:
 - Split-Half Reliability
 - **2** Coefficient α
 - 3 Standardised Coefficient α
 - 4 KR-20

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- This is the most widely used method for estimating reliability
- It is usually referred to as Cronbach's α after its developer—Lee Cronbach (1951)
- There are many ways of calculating lpha
- The book reports two of these methods
- I will illustrate the first method, which to me is the most intuitive

Lee Cronbach (1916–2001)

ヘロト 人間 トイヨト イヨト

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- We will calculate α for the four-item scale example from before
- The first thing we need to do is construct the variance-covariance matrix
- It sounds horrible—but don't feel threatened!
- Remember, we covered the concepts of variance and covariance in our Week 2 lecture

イロト 不得 トイヨト イヨト

Split-Half Reliability: Step 1

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency 3.1 Split-Half Reliability

3.2 Coefficient α

3.3 Standardise
 Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

Table: Variance–Covariance Matrix For the Four-Item Scale Example

	Item 1	Item 2	Item 3	Item 4
Item 1	1.500	0.000	1.000	0.000
Item 2	0.000	0.686	0.000	0.375
Item 3	1.000	0.000	2.500	1.000
Item 4	0.000	0.375	1.000	0.750

イロト 不得 とくほ とくほとう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency 3.1 Split-Half Reliability

3.2 Coefficient α 3.3 Standardised Coefficient α

Factors Affecting Reliability

References

- The diagonal elements in the matrix are the "item variances"
 - the variances of the distribution of scores for item 1 through to item 4
- The off-diagonal elements in the matrix are the "inter-item covariances"
 - the associations between each item and every other item, as measured by covariance

イロト イポト イヨト イヨト

Psychological Measurement

mark.hurlstone @uwa.edu.au

- Empirical Estimates
- 1. Alternate Forms
- 2. Test-Retest
- 3. Internal Consistency 3.1 Split-Half Reliability
- 3.2 Coefficient α
 3.3 Standardised
 Coefficient α
 3.4 KR-20
- Factors Affecting Reliability
- References

- The diagonal elements in the matrix are the "item variances"
 - the variances of the distribution of scores for item 1 through to item 4
- The off-diagonal elements in the matrix are the "inter-item covariances"
 - the associations between each item and every other item, as measured by covariance

イロト イポト イヨト イヨト

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency 3.1 Split-Half Reliability

3.2 Coefficient α

3.3 Standardise
 Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

Table: Variance–Covariance Matrix For the Four-Item Scale Example

	Item 1	Item 2	Item 3	Item 4
Item 1	1.500	0.000	1.000	0.000
Item 2	0.000	0.686	0.000	0.375
Item 3	1.000	0.000	2.500	1.000
Item 4	0.000	0.375	1.000	0.750

イロト 不得 とくほ とくほとう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency 3.1 Split-Half Reliability

3.2 Coefficient α
 3.3 Standardised
 Coefficient α
 3.4 KB.20

Factors Affecting Reliability

References

Table: Example of Internal Consistency Method of Estimating Reliability

	Items				Split-Half 1		Split-Half 2		
Person	1	2	3	4	Total	"Odd"	"Even"	1 and 4	2 and 4
1	4	4	5	4	17	9	8	8	9
2	5	2	4	2	13	9	4	7	6
3	5	4	2	2	13	7	6	7	6
4	2	3	1	2	8	3	5	4	4
Mean Variance	4 1.5	3.25 0.6875	3 5 2.5	2.5 .75	12.75 10.1875	7 6	5.75 2.1875	6.5 2.25	6.25 3.1875

イロト 不同 トイヨト イヨト

ъ

Psychological Measurement

mark.hurlstone @uwa.edu.au

- Empirical Estimates
- 1. Alternate Forms
- 2. Test-Retest
- 3. Internal Consistency 3.1 Split-Half Reliability
- 3.2 Coefficient α
 3.3 Standardised
 Coefficient α
 3.4 KR-20
- Factors Affecting Reliability
- References

- The diagonal elements in the matrix are the "item variances"
 - the variances of the distribution of scores for item 1 through to item 4
- The off-diagonal elements in the matrix are the "inter-item covariances"
 - the associations between each item and every other item, as measured by covariance

イロト イポト イヨト イヨト

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency 3.1 Split-Half Reliability 3.2 Coefficient α

3.3 Standardised
 Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- The diagonal elements in the matrix are the "item variances"
 - the variances of the distribution of scores for item 1 through to item 4
- The off-diagonal elements in the matrix are the "inter-item covariances"
 - the associations between each item and every other item, as measured by covariance

イロト イポト イヨト イヨト

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency 3.1 Split-Half Reliability

3.2 Coefficient α

3.3 Standardise
 Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

Table: Variance–Covariance Matrix For the Four-Item Scale Example

	Item 1	Item 2	Item 3	Item 4
Item 1	1.500	0.000	1.000	0.000
Item 2	0.000	0.686	0.000	0.375
Item 3	1.000	0.000	2.500	1.000
Item 4	0.000	0.375	1.000	0.750

イロト 不得 とくほ とくほとう

ъ

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

• The formula for coefficient α can be expressed as:

$$\alpha = \left(\frac{k}{k-1}\right) \left(\frac{\sum c_{ij}}{s_x^2}\right) \tag{18}$$

イロト 不得 とくほと くほとう

- Where k is the number of items
- <u>
 C</u> c_{ij} is the sum of covariances between any particular item (denoted i) and any other item (denoted as j)
- s_x^2 is the variance of the total scores (the sum of all variances and covariances in the matrix)

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- Note that the second term $\left(\frac{\sum c_{ij}}{s_x^2}\right)$ may be thought of as the mean of all possible inter-item correlations
- It provides an overall index of the degree to which all the items on a scale are associated with one another
- The first term $\left(\frac{k}{k-1}\right)$ is the Spearman–Brown correction introduced previously
- It "scales" the reliability estimate derived from the second term according to the length of the test

<ロ> <問> <問> < E> < E> = E

Psychological Measurement

mark.hurlstone @uwa.edu.au

- Empirical Estimates
- 1. Alternat Forms
- 2. Test-Retest
- 3. Internal Consistency 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

For our example data:

$$\alpha = \text{estimated } R_{xx} = \left(\frac{4}{4-1}\right) \left(\frac{4.75}{10.1875}\right) = (1.333)(0.4663) = .62$$

- The numerator in the second term (4.75) is the sum of <u>covariances</u>
- The denominator in the second term (10.1875) is the sum of variances and covariances

イロト 不得 トイヨト イヨト

Psychological Measurement

mark.hurlstone @uwa.edu.au

- Empirical Estimates
- 1. Alternat Forms
- 2. Test-Retest
- 3. Internal Consistency 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

• For our example data:

$$\alpha = \text{estimated } R_{xx} = \left(\frac{4}{4-1}\right) \left(\frac{4.75}{10.1875}\right) = (1.333)(0.4663) = .62$$

- The numerator in the second term (4.75) is the sum of <u>covariances</u>
- The denominator in the second term (10.1875) is the sum of variances and covariances

イロト イポト イヨト イヨト

Psychological Measurement

mark.hurlstone @uwa.edu.au

- Empirical Estimates
- 1. Alternat Forms
- 2. Test-Retest
- 3. Internal Consistency 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

For our example data:

$$\alpha = \text{estimated } R_{xx} = \left(\frac{4}{4-1}\right) \left(\frac{4.75}{10.1875}\right) = (1.333)(0.4663) = .62$$

- The numerator in the second term (4.75) is the sum of <u>covariances</u>
- The denominator in the second term (10.1875) is the sum of variances and covariances

イロト イポト イヨト イヨト

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- Unlike a correlation coefficient, which ranges in value from -1 to +1, coefficient α typically ranges in value from 0 to 1
- This is because coefficient α —like other coefficients of reliability—is calculated to help answer questions about how *similar* sets of data are
- Here similarity is gauged on a scale from 0 (absolutely no similarity) to 1 (perfectly identical)
- It is possible, however, to conceive of data sets that would yield a negative α value
- Under such rare circumstances the α should be reported as 0

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency 3.1 Split-Half Reliability 3.2 Coefficient α

3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

Coefficient *α* is built on more liberal assumptions than the other reliability methods

1 The α method assumes that test items are *essentially tau* equivalent

 each item is an equally strong indicator of the true score scores, but they may differ in their precision by a constant

イロト イポト イヨト イヨト

- in other words, the items can have different means
- This assumption is not made clear in the textbook

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency 3.1 Split-Half Reliability

3.3 Standardised
 Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

2 Items can have possibly different error variances

イロト 不得 とくほ とくほとう

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency 3.1 Split-Half Reliability

 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- Server scores should be uncorrelated with true scores—error should be random
 - This assumption has been stated previously in the context of the other methods

э

It is an assumption of all forms of reliability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

4 Coefficient α assumes that all items used to generate a composite score measure the same attribute or construct

イロト 不同 トイヨト イヨト

Coefficient α : Some Caveats

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

3. Internal Consistency 3.1 Split-Half Reliability

3.2 Coefficient α
3.3 Standardised
Coefficient α
3.4 KR-20

Factors Affecting Reliability

References

- The value of α depends upon the number of items on your scale
- As the number of items increases, so too does the α level
- Thus, "bigger is not always better"—it is possible to get a large α level merely because you have a lot of items on your scale, rather than because your scale is reliable

イロト イポト イヨト イヨト

• Thus, an α level of .9 or greater may be "too high" and indicate redundancy in the items

Coefficient α : Some Caveats

Psychological Measurement

mark.hurlstone @uwa.edu.au

- Empirical Estimates
- 1. Alternate Forms
- 2. Test-Retest
- 3. Internal Consistency 3.1 Split-Half Reliability
- 3.2 Coefficient α
 3.3 Standardised
 Coefficient α
 3.4 KR-20
- Factors Affecting Reliability
- References

- Coefficient α does not measure "unidimensionality", or the extent to which the scale measures one undelrying factor or construct—this is a common misconception
- Data sets with the same α level can nevertheless have different factor structures
- α should not therefore be used as a measure of unidimensionality
- Cronbach (1951) suggests that if a scale consists of sub-scales, α should be calculated separately for each sub-scale—this follows from assumption 4 (see earlier)

イロト イポト イヨト イヨト

Standardised Coefficient α

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

- 1. Alternat Forms
- 2. Test-Retest
- 3. Internal Consistency 3.1 Split-Half Reliability

3.2 Coefficient α 3.3 Standardised Coefficient α

Factors Affecting Reliability

References

- All you have to know about standardised coefficient α is that you apply it to scores that have been converted from a raw score to a standardised score
- For example, if you had *z* scores and you wanted to calculate the level of internal consistency associated with a composite which consisted of a sum of two or more *z* scores, you would use the standardised version of coefficient alpha
- In practice, it is not often that you find yourself analysing standardised scores, but it does happen from time to time

イロト イポト イヨト イヨト

KR-20

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 Split-Half Reliability
 Coefficient α
 Standardised Coefficient α
 A KR 20

Factors Affecting Reliability

References

- Before Cronbach (1951) introduced Coefficient α , Kuder and Richardson (1937) developed a set of formulas for estimating reliability
- The most widely-known of these is the Kuder–Richardson formula 20, or KR–20
- The KR–20 is used for determining the internal consistency reliability of composite scores based on dichotomously scored items
- The formula is shown on p.142 of the textbook (equation 6.5)
- Compare this formula with the second formula for calculating coefficient α on p.138 of the textbook (equation 6.3)

イロト 不得 とくほ とくほとう

KR-20

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α

3.4 KR-20

Factors Affecting Reliability

References

- You will notice that the formulas are remarkably similar
- This is because coefficient α is a translation of KR–20
- Coefficient α can be applied to dichotomously scored items and it will produce the exact same result as KR–20
- You don't need to know anything more than the above about KR–20

イロト イポト イヨト イヨト

ъ

Factors Affecting Reliability

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 Split-Half Reliability
 Coefficient α
 Standardised Coefficient α
 A KR-20

Factors Affecting Reliability

References

• Earlier, I mentioned that there are two factors that determine the internal consistency reliability of test scores:

The consistency among parts of a test:

• if the test items are strongly correlated with each other, the test is likely to be reliable

2 The test's length:

• all things being equal, a longer test will be more reliable than a shorter test

イロト 不同 とくほ とくほ とう

Factors Affecting Reliability: Part Consistency

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 Split-Half Reliability
 Coefficient α
 Standardised Coefficient α
 A KR-20

Factors Affecting Reliability

References

- The consistency among the parts of a test has a direct effect on reliability estimates
- All things being equal, a test with greater internal consistency will have a greater estimated reliability
- For example, a greater average inter-item covariance will yield a larger value of coefficient α

イロト イポト イヨト イヨト

ъ

Factors Affecting Reliability: Test Length

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- All things being equal, a long test is more reliable than a short test
- To understand why, know that one way to define reliability under CTT is:

$$R_{xx} = \frac{s_t^2}{s_t^2 + s_e^2}$$

• Where s_t^2 is the true score variance and s_e^2 is the error score variance

イロト イポト イヨト イヨト

Factors Affecting Reliability: Test Length

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 2.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

- Increasing the length of a test—by adding new items that measure the same construct as the original items—will increase the true score variance more than the error variance
- This, in turn, will increase the reliability
- For example, suppose the true score variance for a 10-, 20-, and 30-item test is 300, 450, and 600, respectively
- Further, suppose that the error variance is constant for all three test lengths and is equal to 250

イロト イポト イヨト イヨト

Factors Affecting Reliability: Test Length

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternat Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 2.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

• For the 10-item test:

$$R_{xx} = \frac{300}{300 + 250} = \frac{300}{550} = 0.55$$

For the 20-item test:

$$R_{xx} = \frac{450}{450 + 250} = \frac{450}{700} = 0.64$$

For the 30-item test:

$$R_{xx} = \frac{600}{600 + 250} = \frac{600}{850} = 0.71$$

イロト 不同 トイヨト イヨト

References

Psychological Measurement

mark.hurlstone @uwa.edu.au

Empirical Estimates

1. Alternate Forms

2. Test-Retest

 Internal Consistency
 3.1 Split-Half Reliability
 3.2 Coefficient α
 3.3 Standardised Coefficient α
 3.4 KR-20

Factors Affecting Reliability

References

Furr, M. R., & Bacharach, V. R. (2014; Chapter 6). Psychometrics: An Introduction (second edition). Sage.

イロト 不同 トイヨト イヨト