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Abstract Botvinick et al (2009) examined the immediate1

serial recall (ISR) capabilities of a rhesus macaque using2

a spatial short-term memory task akin to that employed in3

human memory studies. They found that the monkey’s per-4

formance exhibited several hallmark effects of human ISR,5

suggesting that computational mechanisms of human short-6

term serial order memory may therefore be appropriate7

for understanding ISR in some nonhuman primate species.8

Here I applied a computational model of short-term mem-9

ory that instantiates four core mechanisms of human ISR—10

competitive queuing, position marking, a primacy gradi-11

ent, and response suppression—to their monkey’s data. The12

model provided an excellent account of the monkey’s ISR13

performance and its capacity to do so was greatly dimin-14

ished when one or more of the mechanisms was eliminated15

from the model, suggesting that all four mechanisms—16

rather than a restricted set of those mechanisms—is re-17

quired to explain the data. The results of the current simula-18

tion study suggest that common mechanisms may underpin19

short-term serial order memory across species.20

Keywords Serial order · Macaque · Short-term memory21

The ability to encode, store, and recall arbitrary fixed 22

sequences of items, actions, and events is a fundamental hu- 23

man cognitive skill. This kind of sequence learning has been 24

studied extensively in humans using the immediate serial 25

recall (ISR) task in which participants are given novel se- 26

quences of verbal, visual, or spatial items that they must sub- 27

sequently recall in the correct order. Considerable progress 28

has been made in understanding the cognitive components 29

underpinning this seemingly simple task thanks to the de- 30

velopment of several computational models of short-term 31

memory that explain detailed aspects of the human ISR data 32

using explicit mechanisms for the representation of serial or- 33

der (Botvinick and Plaut 2006; Brown et al 2000; Burgess 34

and Hitch 1999; Farrell and Lewandowsky 2002; Hartley 35

et al 2016; Henson 1998; Lewandowsky and Farrell 2008; 36

Page and Norris 1998). The analysis of recall error data have 37

played an instrumental role in constraining these models. 38

For example, error analyses have ruled out chaining mod- 39

els in which order is stored through item–item associations 40

(Farrell et al 2013; Henson et al 1996), and conferred sup- 41

port instead for positional models in which order is stored 42

through position–item associations (Conrad 1960; Henson 43

1999; Ryan 1969a,b). 44

The ability to learn arbitrary fixed sequences is not 45

unique to humans. Indeed, non-human primates (hereafter, 46

‘primates’) posses a remarkable capacity for mastering se- 47

rial tasks. Monkeys can encode and reproduce the order 48

of arbitrary fixed sequences of visual images (Chen et al 49

1997; Orlov et al 2000; Terrace 2005) numerals (Inoue and 50

Matsuzawa 2007; Matsuzawa 1985; Kawai and Matsuzawa 51

2000), and spatial targets (Barone and Joseph 1989; Ker- 52

madi and Joseph 1995). They can remember sequences con- 53

taining as many as seven elements (Chen et al 1997) and 54

their performance on serial tasks has sometimes been shown 55
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Fig. 1 Schematic of the spatial ISR task used by Botvinick et al (2009). The items were locations contained within a 3 ⇥ 3 visually presented
grid. (A) At the start of a trial, the central location was illuminated and the animal was required to move a blue cursor from another location
into the central location using a joystick, which caused the cursor to turn yellow. (B-D) Following the temporary disappearance of the cursor, a
sequence of three or four locations—depending on the list-length; three in this example—was conveyed to the observing animal by highlighting
an arbitrary sub-set of locations red, one location at a time. (E) Following a brief delay, the blue cursor re-appeared in the central location cueing
the animal to reproduce the just observed sequence. (F) The animal used the joystick to move the blue cursor to the location corresponding to the
first serial position—holding it in place briefly until the response was registered by the computer—before repeating this process for the locations
corresponding to the second (G) and third (H) serial positions (and the location corresponding to the fourth serial position when the sequence
length was four-items). Figure adapted from Botvinick et al (2009).

to exceed that of human participants (Inoue and Matsuzawa 56

2007). Like humans, monkeys are able to collectively plan57

short sequences of items prior to enactment (Biro and Mat-58

suzawa 1999; Inoue and Matsuzawa 2007; Kawai and Mat-59

suzawa 2000; Scarf et al 2011), and they appear to represent60

sequences by forming associations between items and posi-61

tions, rather than between successive items (Carpenter et al62

1999; D’Amato and Colombo 1988; D’amato and Colombo63

1989; Orlov et al 2000, 2002, 2006).64

Notwithstanding these similarities, as noted by65

Botvinick et al (2009), until recently comparisons of the66

sequence processing capabilities of humans and primates67

had been hampered by the fact that studies with the two68

groups have employed different tasks. The primate studies69

have predominantly employed a serial learning paradigm70

(Terrace 2005) in which monkeys gradually acquire se-71

quences over multiple encoding and recall attempts using a72

forward training procedure—e.g., to acquire the sequence73

A ! B ! C ! D ! E ! F ! G, the subject is trained to74

respond A initially, then A ! B, then A ! B ! C, and so75

on and so forth until the entire sequence can be produced.76

As such, these studies probe long-term memory for serial77

order, rather than short-term memory for serial order—the78

competency indexed by the ISR task used with humans.79

Spatial ISR in primates80

This gap in the literature was recently filled by two stud- 81

ies that examined the sequence processing abilities of a 82

single rhesus macaque (Botvinick et al 2009) and two ba- 83

boons (Fagot and De Lillo 2011) using an ISR task for se- 84

quences of spatial locations similar to that used to inves- 85

tigate serial spatial short-term memory in humans (Jones 86

et al 1995; Smyth and Scholey 1996). Although both stud- 87

ies showed that the ISR performance of monkeys exhibits 88

attributes of human ISR—notably list length and serial posi- 89

tion effects (see below)—the study of Botvinick et al (2009) 90

is especially noteworthy, since these authors evaluated their 91

monkey’s performance with reference to several benchmark 92

characteristics of human ISR, which included a detailed 93

analysis of recall error data. 94

The spatial ISR task employed by Botvinick et al (2009) 95

is illustrated graphically in Fig 1. The to-be-remembered 96

items were spatial locations (square icons) contained within 97

a 3 ⇥ 3 visually presented grid. On each ISR trial, a se- 98

quence of either three or four locations was conveyed by 99

sequentially highlighting a random sub-set of the locations, 100

after which the animal’s task was to reproduce the sequence 101

using a joystick controlled cursor. The monkey’s perfor- 102
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Fig. 2 The monkey’s results for four key behavioural measures: (A) accuracy and repetition error serial position curves, (B) transposition error
gradient for four-item lists, (C) aggregate spatial error gradients, and (D) spatial error gradients for the second, third, and fourth output position in
four-item lists.

mance on this task exhibited several hallmarks of human 103

ISR, which are described in the foregoing sub-sections.104

List length effect105

In humans, ISR performance for lists composed of verbal106

items (Crannell and Parrish 1957; Maybery et al 2002) and107

spatial items (Jones et al 1995; Smyth and Scholey 1996)108

decreases as the length of the target sequence to-be-recalled109

increases—a result dubbed the list length effect.110

Fig 2A shows the accuracy serial position curves for111

three- and four-item lists for the monkey’s performance.112

Consistent with the list length effect in human ISR, it can113

be seen that recall accuracy was lower for four- than three-114

item lists.115

Primacy and recency effects116

A hallmark feature of human ISR is the presence of serial117

position effects on performance. Recall accuracy decreases118

sharply from the first position onwards (viz. the primacy ef-119

fect), with an upturn in performance for the final item (viz.120

the recency effect), yielding an asymmetrically bowed serial121

position curve. Primacy and recency effects are a character- 122

istic of both verbal ISR (Baddeley 1968; Henson et al 1996) 123

and spatial ISR (Jones et al 1995; Smyth and Scholey 1996) 124

performance in humans. 125

Consistent with the human ISR data, it can be seen from 126

Fig 2A that the monkey exhibited a pronounced primacy ef- 127

fect. However, at variance with those data it did not exhibit a 128

positive recency effect. Indeed, the monkey actually showed 129

a negative recency effect, with the accuracy of recall of the 130

final item on three- and four-item lists being lower than for 131

the penultimate item. 132

Transposition error gradients 133

A large proportion of errors in human ISR are order er- 134

rors involving the recall of items in the wrong serial posi- 135

tions. These transposition errors exhibit a tendency to clus- 136

ter around their correct serial positions—an empirical regu- 137

larity known as the locality constraint (Henson 1996). Ac- 138

cordingly, when the probability of a transposition is plot- 139

ted as a function of transposition distance—viz. the ordinal 140

distance of the transposed item from its correct position— 141
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the resulting gradients peak for one-apart transpositions 142

with the number of transpositions decreasing monotonically143

with increasing transposition distance. The locality con-144

straint is a robust feature of both verbal ISR (Henson 1996;145

Lewandowsky and Farrell 2008) and spatial ISR (Hurlstone146

and Hitch 2015; Parmentier et al 2006; Smyth and Scholey147

1996) performance in humans.148

The transposition gradient for four-item lists associated149

with the monkey’s performance can be inspected in Fig 2B150

from which it can be seen that transpositions obeyed the lo-151

cality constraint observed in humans.152

Item similarity effect153

Errors in human ISR sometimes involve confusions between154

items that share similar characteristics. In verbal ISR, such155

confusions are based on phonology as evidenced by the156

phonological similarity effect (Baddeley 1966, 1968; Con-157

rad and Hull 1964)—lists of phonologically similar sound-158

ing items (e.g., B D G P T V) are recalled less accurately159

than lists of phonologically dissimilar sounding items (e.g.,160

e.g., F K L R X Y). In spatial short-term memory, item con-161

fusion errors occur on the basis of the spatial proximity of162

items (Hitch, 1974). Accordingly, when errors are plotted as163

a function of spatial proximity to the correct item, the prob-164

ability of an error decreases monotonically with increasing165

spatial distance—viz. a locality constraint over the spatial,166

as opposed to temporal, distance between items (Hitch 1974;167

Rerko et al 2014). In human spatial ISR, the magnitude of168

such spatial errors is known to interact with serial position169

(Farrand and Jones 1996; Farrand et al 2001).170

Fig 2C plots the aggregate spatial error gradients for171

three- and four-item lists for the monkey’s performance (in172

the figure, spatial proximity is represented using a Manhat-173

tan distance metric). Consistent with the locality constraint,174

the gradients peak for one-apart spatial errors and decrease175

monotonically with increasing spatial distance. The gradient176

is also steeper for three- than four-item lists. Fig 2D plots177

the individual spatial error gradients for the second, third,178

and fourth output positions in four-item lists. It can be seen179

that the distribution of spatial errors interacts with serial po-180

sition, with the error gradients becoming shallower at later181

output positions.182

In brief, consistent with the data from human spatial ISR183

the monkey’s performance was sensitive to the spatial simi-184

larity of items, and additionally this spatial similarity effect185

interacted with serial position.186

Repetition errors187

Repetition errors—viz. the repeated report of an item pre-188

sented only once on the study list—are very rare in human189

verbal (Henson 1996; Vousden and Brown 1998) and spa-190

tial ISR (Hurlstone and Hitch 2015), accounting for around 191

1% (Hurlstone and Hitch 2015) to 5% (Henson 1996) of 192

all responses. The frequency of repetitions in human ISR 193

is known to increase with serial position (Henson 1996). 194

The repetition error serial position curves for three- and 195

four-item lists for the monkey’s performance are shown 196

alongside the accuracy serial curves in Fig 2A. Consistent 197

with the human ISR data, erroneous repetitions were rare 198

and their frequency increased across output positions. 199

Fill-in errors 200

Transposition errors in human ISR exhibit a particular pat- 201

tern of sequential dependency. If an item i is recalled a po- 202

sition ahead of its correct position (e.g., recalling Bxx fol- 203

lowing the list ABC), item i – 1 is more likely to be recalled 204

at the next output position (e.g., BAx; known as a fill-in er- 205

ror) than item i + 1 (e.g., BCx; known as an infill error). 206

Specifically, fill-in errors outweigh infill errors by a ratio of 207

approximately 2:1 in both verbal ISR (Farrell et al 2013; 208

Henson 1996; Page and Norris 1998; Surprenant et al 2005) 209

and spatial ISR (Guérard and Tremblay 2008). 210

This fill-in tendency is also a feature of the monkey’s 211

ISR performance, which contained 46 fill-in errors and 10 212

infill errors, yielding a ratio of 4.6:1. 213

Protrusion errors 214

In human ISR, items that were not part of the study list 215

sometimes intrude into participant’s recalls. These errors of- 216

ten take the form of immediate intrusions, which occur when 217

a participant recalls an item from trial N – 1 on trial N de- 218

spite the item not being present on the study list for that 219

trial. When these immediate intrusion errors occur they of- 220

ten maintain their serial position from trial N – 1 (Conrad 221

1960; Henson 1996, 1999). These position-preserving in- 222

trusions are known as protrusion errors (Henson 1996) and 223

their frequency of occurrence is greater than would be ex- 224

pected by chance alone. 225

The monkey’s ISR performance was also characterised 226

by protrusions. Out of 157 immediate intrusion errors on 227

four-item lists, 51 (32.5%) were protrusion errors that main- 228

tained their position from the preceding trial—a rate greater 229

than would be expected by chance (25%; viz. 1/n—where n 230

is the list length). 231

Current study 232

As noted by Botvinick et al (2009), the correspondence be- 233

tween the monkey’s ISR performance and that of humans 234
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is striking and suggests that the mechanisms of serial or- 235

der embodied in computational models of serial order in hu-236

man short-term memory might be extensible to some pri-237

mate species. The aim of the current study is to provide a238

formal test of this possibility by applying a computational239

model that implements the representational mechanisms that240

have been found to underpin human ISR to their monkey’s241

data to establish if these mechanisms—or a restricted set of242

these mechanisms—can reproduce his behavioural results.243

The model is based on competitive queuing models244

of serial behaviour (Glasspool 2005; Houghton 1990)—the245

dominant class of models of human ISR (Brown et al 2000;246

Burgess and Hitch 1999; Farrell and Lewandowsky 2002;247

Henson 1998; Page and Norris 1998). In competitive queu-248

ing models, items are activated in parallel and the item with249

the strongest activation level is selected for output. There is250

already direct evidence that primates utilise the competitive251

queuing mechanism based on electrophysiological record-252

ing data obtained whilst rhesus monkeys performed a serial253

imitation task (Averbeck et al 2002, 2003a,b). In the com-254

petitive queuing model examined here, serial order is rep-255

resented by forming associations between items and a rep-256

resentation of the their ordinal sequence position (viz. po-257

sition marking), by encoding each item with progressively258

less strength (viz. a primacy gradient), and by suppressing259

items in memory once they have been recalled (viz. response260

suppression). There is considerable evidence that these four261

mechanisms are implicated in the representation of serial or-262

der in short-term memory in humans (Hurlstone et al 2014;263

Lewandowsky and Farrell 2008).264

A generic competitive queuing model of spatial ISR265

Model architecture266

Fig 3 shows a schematic of the architecture of the compet-267

itive queuing model, which comprises three distinct layers268

of units—a context layer, an activation layer, and a selection269

layer. The context layer maintains a distributed representa-270

tion of the current position in the list, whereas the activation271

and selection layers implement a localist coding scheme,272

whereby each unit corresponds to a different item (location)273

in the 3 ⇥ 3 visually presented grid (Fig 1). The context274

layer and activation layer are connected by a Hebbian weight275

matrix within which short-term associations between items276

and a representation of their position are stored. Each unit277

in the activation layer has a connection to all other units in278

the selection layer. The strength of these connections reflect279

the similarity between each location with itself, and all other280

locations in the visual grid. Accordingly, the connection is281

strongest between each unit in the activation layer and its282

corresponding unit in the selection layer, with the strength283

Activation Layer

Selection Layer

Context Layer

Conversion To Time

Fig. 3 Schematic of the architecture of the competitive queuing model.
Note that to avoid visual clutter only a subset of the units in each layer
are shown; inhibitory connections from the selection layer to the acti-
vation layer are included only for two units; self-excitatory connections
in the selection layer are omitted; and only adjacent-neighbour lateral
inhibitory connections are illustrated in the selection layer. See main
text for further details.

of connections between all other units decreasing as an ex-284

ponential function of their spatial distance from one another. 285

Formally, the strength of the connection w

AS

i j

between each 286

unit j in the activation layer and each unit i in the selection 287

layer is given by: 288

w

AS

i j

= e

�cd

i j , (1)

where d

i j

is the Manhattan distance between item i and 289

item j, which is given by: 290

d

i j

=
k

Â
l=1

|a
l

�b

l

|, (2)

where the two-element vectors a and b represent item 291

i’s and j’s coordinates within the spatial array (Fig. 1), re- 292

spectively, and l indexes the k dimensions of each vector. 293

The parameter c in equation 1 is a sensitivity parameter that 294

governs the rate at which similarity between items decreases 295

with increasing spatial distance. 296
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In addition to the weighted connections from the ac- 297

tivation layer, each unit in the selection layer has a self-298

excitatory connection and lateral inhibitory connections to299

all other units in the selection layer. Each unit in the se-300

lection layer also has an inhibitory connection to its corre-301

sponding unit in the activation layer.302

Encoding303

The position of each item in a serial list is represented by a304

16-element distributed context vector (with values between305

-1 and +1) constructed so that the cosine similarity between306

any pair of vectors decreases as an exponential function of307

their absolute ordinal distance (Farrell 2006):308

cos
�
c

p

,c
q

�
= f (|p�q|), (3)

where c
p

and c
q

are context vectors for positions p and309

q, respectively, and f is a parameter controlling the rate at310

which similarity drops off with increasing ordinal distance.311

The encoding of a list of items within the network is312

carried out by imposing the context vector representing the313

current list position over the context layer, activating the just314

presented item in the activation layer—viz. setting its unit’s315

activation to 1, and the activation of all other units to 0—and316

modifying the strength of the weight w

CA

i j

connecting each317

unit i in the activation layer and each unit j in the context318

layer via Hebbian learning:319

Dw

CA

i j

= h
p

a

A

i

a

C

j

, (4)

where a

A

i

is the activation of unit i in the activation layer,320

a

C

j

is the activation of unit j in the context layer, and h is321

a learning rate parameter that governs the strength of the322

context-item associations. Specifically, the strength of these323

associations decreases exponentially across list positions ac-324

cording to a primacy gradient of encoding strength:325

h
p

= q p�1, (5)

where q is a parameter determining the steepness of the326

primacy gradient over list positions.327

The process just described encodes serial order through328

position–item associations (viz. position marking). However329

the primacy gradient in encoding strength means that the330

representation of order contains an ordinal, as well as a331

positional, component. Evidence that rhesus monkeys use332

position–items associations has been obtained from posi-333

tional intrusion errors in a delayed sequence-recall task334

(Orlov et al 2000, 2002, 2006).335

Retrieval336

At retrieval the context vector for the current recall position 337

is reinstated in the context layer and presented to the weight 338

matrix connecting it with the activation layer. The net input 339

to each item unit i in the activation layer net

A

i

is given by: 340

net

A

i

= Â j

a

C

j

w

CA

i j

+ e(0,d A), (6)

where a

C

j

and w

CA

i j

are the same as before. This gener- 341

ates an activation gradient over the item units such that the 342

unit corresponding to the item presented at the position be- 343

ing cued will be activated strongest, with the activation of 344

units corresponding to neighbouring list-items falling off as 345

their ordinal distance from the cued item on the presented 346

list increases. The activations elicited by the reinstated con- 347

text vector are augmented with zero-mean Gaussian noise e 348

with standard deviation d A to simulate transposition errors. 349

A key feature of the competitive queuing approach is 350

that items are temporarily inhibited once they have been out- 351

put by setting their activations to negative values. Accord- 352

ingly, some mechanism is required to ensure that suppressed 353

items are briefly removed from the response competition. To 354

accomplish this, the activation of each item unit i in the ac- 355

tivation layer a

A

i

is subject to the following activation func- 356

tion: 357

a

A

i

(p) =

(
net

A

i

(p) if a

A

i

(p-1) � 0,
net

A

i

(p) + aA

i

(p-1) exp(-l ) otherwise,
(7)

To explain, if the activation of unit a

A

i

at position p-1 is 358

equal to or greater than zero—viz. if that unit is not in a sup- 359

pressed state—then its activation at position p is based on 360

the net input elicited by the reinstated context vector only, 361

otherwise its activation is the joint combination of the net 362

input elicited by the reinstated context vector and its cur- 363

rent negative activation value. The activation values of sup- 364

pressed items gradually recover from inhibition over recall 365

positions, with the extent of this release from inhibition be- 366

ing governed by the parameter l . 367

The most active item unit in the activation layer propa- 368

gates its activation along its weighted connections to each 369

unit in the selection layer. The initial input to each unit i in 370

this layer a

S

i

is given by: 371

a

S

i

= a

A

win

w

AS

iwin

+ e(0,d S), (8)

where a

A

win

is the activation of the winning item unit win 372

in the activation layer and w

AS

iwin

is the weight of its connec- 373

tion with each unit i in the selection layer, which is gov- 374

erned by equations 1 and 2. This results in the item unit in 375
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the selection layer corresponding to the winning item in the 376

activation layer being activated the strongest, with the ac-377

tivation of other item units decreasing as their spatial dis-378

tance from this item increases. The item unit activations in379

the selection layer are supplemented with zero-mean Gaus-380

sian noise e with standard deviation d S in order to simulate381

spatial errors. The activations of item units in the selection382

layer are iteratively updated over time according to the fol-383

lowing equation:384

int

S

i

(t) = a

S

i

(t �1)a +b Â
j 6=i

j

a

S

j

(t �1)+ e(0,d S), (9)

where int

S

i

(t) is the internal activation—viz. the net in-385

put a unit receives from within the selection layer—of item386

unit i at time t, a

S

i

(t � 1) is its activation at the preceding387

time step, a

S

j

(t�1) is the activation of each other item unit j388

at the preceding time step, a is the strength of the recurrent389

self-excitatory connections (a = 1.1), b is the strength of the390

lateral-inhibitory connections (b = -0.1), and e and d S are as391

before. Equation 9 implements a winner-takes-all “compet-392

itive filter” (Houghton 1990), which selects the most active393

item for output. The initially most active item unit has the394

advantage that it will send more activation to itself than any395

other item unit, and will also receive the least lateral inhi-396

bition. As the unit activations are iteratively updated over397

time this results in a gradual increase in the activation of the398

strongest unit, and a gradual decrease in the activations of399

the weaker units as they receive more lateral inhibition.400

The competitive filter is applied for a fixed duration of401

20 iterative cycles—sufficient time to identify an unambigu-402

ous response. The item with the strongest activation level403

at the end of this period constitutes the network’s response404

for the current recall position. The recall of an item is fol-405

lowed by the suppression of its unit’s activation in the ac-406

tivation layer by setting its activation level to a fixed sup-407

pressed value t of -1. This implements the mechanism of408

response suppression, which is a core ingredient in competi-409

tive queuing models. It was also assumed that the process of410

generating an item for output adds noise to the representa-411

tions of yet to-be-recalled items—an assumption known as412

output interference. Consistent with other network models413

of serial recall (Brown et al 2000; Lewandowsky and Farrell414

2008), this output-contingent interference was modelled by415

adding zero-mean Gaussian noise with standard deviation416

d wCA to each of the context-item weights linking the acti-417

vation and context layers following the output of each item418

(d wCA = .04).419

To model protrusion errors, the context-item weights420

were not refreshed (i.e., set to zero) at the start of each new421

simulation trial. Instead, the context-item associations estab-422

lished on each trial were stored on a common weight matrix.423

At the end of each simulation trial, the context-item weights424

were normalised so that recent weight changes were more425

influential than earlier weight changes. 426

Modelling negative recency 427

One challenge in modelling the monkey’s data is captur- 428

ing the negative recency effect. This effect is difficult to 429

reproduce using the model just described because compet- 430

itive queuing models are by design configured to generate 431

a recency (along with a primacy) effect. There are several 432

factors that promote recency in the current model. One fac- 433

tor is “edge effects”—because the last item only has neigh- 434

bouring competitors on one side of the list it will be re- 435

called with a higher level of accuracy than items at medial 436

serial positions, which have neighbouring competitors on 437

both sides of the list. Another contributing factor is response 438

suppression—as recall progresses, the cohort of recall can- 439

didates gradually winnows down due to the suppression of 440

items already emitted, which increases the likelihood that 441

the final item will be assigned to its correct position. 442

Modelling the negative recency effect is necessary not 443

just in terms of providing an explanation for its presence 444

in the monkey’s data but because it is impossible to recre- 445

ate the distributions of the various different errors without 446

modelling the sharp decline in recall accuracy toward the 447

end of the list. How then to explain this result? One expla- 448

nation offered by Botvinick et al (2009) is that it might be 449

due to interference caused by irrelevant events—including 450

a tone and a juice reward—that were interspersed between 451

each recall episode. This interference is not dissimilar to the 452

output interference implemented in the current model and 453

provides an additional precedent for its incorporation. How- 454

ever, output interference alone was found to be insufficient 455

to generate the sharp drop in recall over the final two serial 456

positions. Another possibility—and the explanation pursued 457

here—is that this effect reflects the action of a selective en- 458

coding strategy adopted during the encoding of serial lists. 459

This account supposes that the monkey allocated most of his 460

attention to encoding the first and second item in each list, 461

with a subsequent sharp drop in the attention allocated to 462

encoding the third item (in three- and four-item lists), and a 463

further abrupt drop in the attention allocated to encoding the 464

fourth item (in four-item lists). 465

This selective encoding strategy was implemented 466

through the following modification to equation 2 that gen- 467

erates the primacy gradient governing the encoding strength 468

of the context-item associations across serial positions: 469

h
p

=

8
><

>:

q p�1 if p  2,
q p+1 if p = 3,
q p+3 if p = 4,

(10)
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The encoding strength of the first two items in the list is 470

calculated in the same way as in equation 2. However, the471

encoding strength of the third item (on three- and four-item472

lists) is calculated as though this were the fifth item on a473

longer sequence, whilst the encoding strength of the fourth474

item (on four-item lists) is calculated as though this were the475

eighth item on a longer sequence. As desired, this produces476

a sharp drop in encoding strength from input position 2 to477

3, and another sharp drop in encoding strength from input478

position 3 to 4.479

Model fitting procedure480

The to-be-fitted data consisted of the following behavioural481

measures (27 data points in total): (1) accuracy serial posi-482

tion curves (seven data points), (2) repetition serial position483

curves (seven data points), (3) transposition gradient (three484

data points), (4) aggregate spatial error gradients (eight data485

points), (5) proportion of fill-in to infill errors (one data486

point), and (6) proportion of immediate intrusion errors that487

were protrusions (one data point). Data for both list-lengths488

were used for behavioural measures 1, 2, and 4, whereas489

only the data for four-item lists were used for the other be-490

havioural measures (consistent with the reporting of these491

data by Botvinick et al 2009).492

To fit the model, predictions were generated for the493

above measures for a set of starting model parameter values494

and the discrepancy between the data and model predictions495

was evaluated using the Pearson chi-square statistic:496

c2 = N Â
i

p

i

�p
i

p
i

, (11)

where p

i

is the observed proportion for data point i, p
i

497

is the corresponding proportion predicted by the model, and498

N is the number of observations. Since the chi-square statis-499

tic was calculated using observed and predicted proportions,500

rather than frequencies, the value of N was simply set to 100.501

The parameters of the model were varied systematically us-502

ing the SIMPLEX function minimisation algorithm (Nelder503

and Mead 1965) until a minimum value of the chi-square504

statistic was obtained. Each parameter vector explored by505

the minimisation algorithm involved 2500 simulation trials506

of three- and four-item lists.507

The parameters that were varied during the fitting were508

the degree of similarity of the context vectors f ; the steep-509

ness of the primacy gradient in encoding strength q ; the510

amount of decay from response suppression l ; the sensi-511

tivity parameter controlling the degree of confusability of512

items in the selection layer c; the amount of noise in the ac-513

tivation layer d A; and the amount of noise in the selection514

layer d S (six free parameters in total).515

Model comparisons516

The general model described above instantiates several dif- 517

ferent mechanisms. To ensure that the incorporation of each 518

of these mechanisms is warranted and that the model is not 519

over-specified, model comparisons were performed in which 520

the fit of the general model was compared with that of sev- 521

eral restricted model variants in which one mechanism (or 522

several) in the general model were eliminated. Specifically, 523

the fit of the general model was compared with that of three 524

restricted model variants: (a) a model in which response sup- 525

pression was eliminated (removing two parameters; viz. t , 526

and l ), (b) a model in which the primacy gradient was elim- 527

inated (removing one parameter; viz. q ), and (c) a model in 528

which the primacy gradient and response suppression was 529

eliminated (removing three parameters; viz. q , t , and l ). 530

These models were fit to the behavioural measures in exactly 531

the same way as described for the general model, except that 532

the parameters associated with the eliminated mechanisms 533

were rendered inactive. 534

In addition to evaluating the models in terms of their best 535

fitting chi-square statistics, the Bayesian information crite- 536

rion (BIC, Schwarz, 1978) was calculated. The BIC is an 537

index that takes into consideration both a model’s goodness 538

of fit and its number of model parameters. The BIC was cal- 539

culated as: 540

BIC
i

=V

i

ln(n)+n ln
✓

RSS
i

n

◆
, (12)

where V is the number of free model parameters, n is the 541

number of data points being fitted, RSS is the residual sum 542

of squares, and i indexes the model for which BIC is being 543

calculated. 544

To aid interpretation, the raw BIC scores were converted 545

into BIC weights (Burnham and Anderson 2002; Wagen- 546

makers and Farrell 2004), which express the degree of sup- 547

port for each model on a continuous measure of evidence. 548

The BIC weight for model i was calculated by: 549

wBIC
i

=
exp(�0.5DBIC

i

)

ÂK

k=1 exp(�0.5DBIC
k

)
, (13)

where DBIC
i

is the difference in BIC between model i 550

relative to the best model, and each DBIC
k

is the difference 551

in BIC between a specific model k in the candidate set K and 552

the best model. 553

Simulation Results 554

The goodness-of-fit quantities for the general model and the 555

three restricted model variants can be scrutinised in Table 1. 556

It can be seen by inspection that the general model obtained 557
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Table 1 Goodness-of-fit quantities for the general model and the three
restricted model variants.

Model V c2 BIC DBIC wBIC
general 7 23.05 -168.79 0 1
restrictPG+PM 5 104.91 -102.22 66.57 0
restrictPM+RS 6 120.69 -93.93 74.86 0
restrictPM 4 114.51 -99.28 69.51 0

Note: V = number of free model parameters; c2 = Pearson chi-square
statistic; BIC = Bayesian information criterion; DBIC = difference in
BIC with respect to the best fitting model; wBIC = BIC weight. The

bold item indicates the best fitting model.

the smallest c2 value, followed by the restrictPG+PM model, 558

then the restrictPM model, with the restrictPM+RS model ob-559

taining the largest c2 value.560

Before scrutinising the BIC scores, note that an extra pa-561

rameter was added to the value of V (the number of free562

model parameters) prior to the computation of the BIC for563

the general model and the restrictPM+RS model—taking the564

value of V for these models from six to seven and five to565

six, respectively. This extra parameter reflects the degree of566

response suppression (t). Although this parameter was not567

varied in the fitting (it is by definition a fixed parameter), the568

models nevertheless need to be penalised for containing an569

extra parameter that is not present in the other two models.570

Turning now to the BIC scores, the scores shown in571

Table 1 confirm that the advantage of the general model572

over the restricted model variants stands after controlling for573

model complexity, and additionally the BIC weights indicate574

that the evidence in favour this model is decisive. The best575

fitting parameters for the general model are given in Table 2.576

As the model comparisons confirm that the general model is577

the preferred model of the data, for brevity, in what follows578

I will only present the simulation results for this model.579

List length, primacy, and recency580

The accuracy serial position curves predicted by the general581

model are shown in Fig 4A. It is apparent from inspection582

of this figure that the general model predicted a small list583

length effect, an extensive primacy effect, and a negative re-584

cency effect consistent with the empirical data (Fig 2A). The585

list-length effect arises in the model because the more items586

in the list, the greater the probability there will be at least one587

error. The primacy effect is attributable to the primacy gra-588

dient in the encoding strength of items, whilst the negative589

recency effect is the result of the selective encoding strat-590

egy built into the primacy gradient, which causes an abrupt591

drop in encoding strength toward the end of the list thereby592

counteracting the mechanisms that promote recency.593

Transposition error gradient594

Consistent with the empirical transposition gradient for 595

four-item lists (Fig 2B), the transposition gradient predicted 596

by the general model for the same list length shows a posi- 597

tional locality constraint—the gradient peaks for one-apart 598

transpositions and then decreases monotonically with in- 599

creasing transposition distance (Fig 4B). Thus, when an item 600

was recalled in the wrong position, it tended to be recalled 601

in a position close to its correct position. In the model, the 602

positional locality constraint arises due to the local self- 603

similarity of the context signal—neighbouring states (viz. 604

adjacent serial positions) of context are more similar to one 605

another than states that are separated in ordinal distance (viz. 606

non-adjacent serial positions). This means that when a con- 607

text pattern is presented to the activation layer, items that 608

are close in ordinal distance to the target item will be acti- 609

vated more strongly than items that are far from the target 610

item in ordinal distance. Accordingly, when the item unit 611

activations are augmented with noise, near-neighbour trans- 612

positions will be more likely than distant-neighbour trans- 613

positions. 614

Spatial error gradients 615

As well as predicting a locality constraint for transposi- 616

tion errors, the general model predicted a locality constraint 617

for spatial errors. In accordance with the monkey’s data 618

(Fig 2C), the aggregate spatial error gradients predicted by 619

the model peak for one-apart spatial errors, with the fre- 620

quency of errors decreasing monotonically with increasing 621

spatial distance, and additionally, the aggregate spatial error 622

gradient is steeper for three- than for four-item lists (Fig 4C). 623

Furthermore, it can be seen from inspection of Fig 4D that 624

the general model captured the reduction in slope of the in- 625

dividual spatial error gradients with increasing output posi- 626

tion for four-item lists that is a feature of the monkey’s ISR 627

performance (Fig 2D). In the model, the spatial locality con- 628

Table 2 Fixed and free parameter values for the general model.

Parameter Description Value
Fixed parameters
a Recurrent self-excitation 1.1
b Lateral inhibition –0.1
t Level of response suppression –1
d wCA Degree of output interference 0.04
Free parameters
f Similarity of context vectors 0.6755
q Steepness of primacy gradient 0.7827
l Decay from response suppression 0.1631
c Item confusability in selection layer 0.0713
d A Noise applied to activation layer 0.0480
d S Noise applied to selection layer 0.0055
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Fig. 4 Predictions of the general model for the four key behavioural measures: (A) accuracy and repetition error serial position curves, (B)
transposition error gradient for four-item lists, (C) aggregate spatial error gradients, and (D) spatial error gradients for the second, third, and fourth
output position in four-item lists.

straint is a consequence of the exponential relation between 629

similarity and spatial distance embodied in the weights link-630

ing item units in the activation and selection layers (equa-631

tions 1 and 2). This means that when activation from a win-632

ning item in the activation layer propagates through to the633

selection layer, items that are spatially near to the target item634

will be activated more strongly than items that are spatially635

far from the target item. Accordingly, when the item unit636

activations are augmented with noise, near-neighbour spa-637

tial errors will be more likely than distant-neighbour spatial638

errors.639

Repetition errors640

The repetition error serial position curves predicted by the641

general model are shown in Fig 4A. Consistent with the em-642

pirical data (Fig 2A), repetitions were infrequent and their643

probability increased with output position. The scarcity of644

repetitions in the model is due to the operation of response645

suppression—the suppression of a recalled item’s activation646

in the activation layer removes it briefly from the response647

competition, rendering it unlikely the item will be reported648

twice. The probability of repetitions increases with output649

position due to the greater time available for a suppressed650

item to recover from inhibition. 651

Protrusion errors 652

The general model predicted a protrusion rate of 31.24% 653

(289 protrusions out of 925 immediate intrusions), which 654

compares favourably with the rate of 32.5% (51 protrusions 655

out of 150 immediate intrusions) exhibited by the monkey. 656

Immediate intrusions arise in the model because the context- 657

item associations formed on different trials are stored in a 658

common Hebbian weight matrix—the associations formed 659

on trial n will be superimposed on the associations estab- 660

lished on all trials so far. Thus, when a context cue for a 661

given position is presented to the activation layer on trial n, 662

as well as activating the target item on trial n and neighbour- 663

ing list competitors, the context cue will activate the target 664

item and neighbouring list competitors from trial n – 1 (and 665

to a lesser degree items from earlier trials whose associa- 666

tions are less strongly represented in the weight matrix due 667

to the weight normalisation that occurs at the end of each 668

trial, which gradually washes out the influence of these as- 669

sociations over time). With the addition of random noise to 670
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item activations, sometimes the discrepancy between the ac- 671

tivations of items from trial n and trial n – 1 will be bridged,672

triggering an intrusion. However, because the context-item673

association of the item on trial n – 1 that occupied the posi-674

tion being cued will bear a stronger similarity to the current675

context cue than the associations of items from different po-676

sitions on trial n-1, intrusions will most often be protrusions.677

Fill-in errors678

The general model produced a fill-in ratio of 3.88:1 (101 fill-679

in errors vs. 26 infill errors), which is slightly smaller than680

the observed ratio of 4.6:1 for the monkey’s data (46 fill-in681

errors vs. 10 infill errors). The predominance of fill-in events682

in the general model is attributable to the representation of683

serial order by a primacy gradient and response suppression.684

This means that when an item i is reported a position too685

soon and then suppressed, item i – 1 will be a stronger recall686

competitor at the next output position than item i + 1 because687

the former item—by virtue of occurring earlier on the study688

list—will have been encoded with greater strength on the689

primacy gradient.690

Discussion691

Summary of findings692

Using computational simulations, the current study sought693

to establish whether the spatial ISR performance of a rhe-694

sus monkey could be explained in terms of the seriating695

mechanisms embodied in computational models of human696

ISR. The results suggest that four core mechanisms of hu-697

man ISR—viz. competitive queuing, position marking, a698

primacy gradient, and response suppression—are also im-699

plicated in the representation and control of serial order in700

this primate species. The model comparisons confirmed that701

all four mechanisms are necessary to accurately reproduce702

the monkey’s performance. That is, the correspondence be-703

tween the data and simulation results was severely compro-704

mised when one or more of the seriating mechanisms was705

eliminated from the general model. In what follows, I will706

describe those aspects of the monkey’s data that confer sup-707

port for the different seriating mechanisms, consider some708

limitations of the current modelling exercise, and identify709

directions for future work.710

Evidence for the four mechanisms711

At the outset, it was noted that strikingly direct evidence has712

been obtained from electrophysiological recording data that713

rhesus monkeys use the competitive queuing mechanism to714

plan and produce sequences (Averbeck et al 2002, 2003a,b).715

The results of the current simulation study provide converg- 716

ing evidence for this proposition by showing that a model 717

based on competitive queuing principles can reproduce the 718

key behavioural features of a rhesus monkey’s spatial ISR 719

performance. To my knowledge, this is the first computa- 720

tional application of the competitive queuing mechanism to 721

serial order behaviour in a primate. 722

It is the model’s capacity to reproduce the pattern of re- 723

call errors seen in the monkey’s spatial ISR performance 724

that is most emblematic of the operation of the competi- 725

tive queuing mechanism. Like all competitive queuing mod- 726

els, a defining feature of the current model is that items are 727

(re)activated in parallel at retrieval. There are two sources of 728

parallel response activation in the present model. The first 729

originates from the cueing of items in the activation layer by 730

the context vectors in the context layer. This results in the 731

target item being activated maximally, with neighbouring 732

items being activated based on their ordinal distance from 733

the target item in the input list. The second originates from 734

the retrieval of an item in the activation layer, which acti- 735

vates items in the selection layer based on their similarity to 736

the retrieved item. Since the retrieved item will be most sim- 737

ilar to itself, its unit will be activated maximally, whereas the 738

activation of other units will fall off with increasing spatial 739

distance from the retrieved item. The addition of moderate 740

random noise to item units in the activation and selection 741

layers is the basis by which the model generates transposi- 742

tion and spatial errors, respectively. Since the activations of 743

items in both layers follow a gradient that is centred on the 744

target item, transposition and spatial errors are most likely to 745

involve items that are close in ordinal or spatial distance to 746

the target item. It is this parallel gradient-based response ac- 747

tivation in the activation and selection layers—and the two- 748

stage sequence production process—that enables the model 749

to reproduce the positional and spatial locality constraints 750

that are key features of the monkey’s data. 751

The use of a two-stage sequence production process to 752

model spatial errors might seem unparsimonious. Why not 753

model spatial errors in the activation layer and do away with 754

the selection layer? Empirically, the observation of both a 755

positional and a spatial locality constraint suggests that the 756

effects of positional and spatial uncertainty arise indepen- 757

dently, rather than additively. Indeed, an attempt to model 758

the data within a single stage by superimposing an activa- 759

tion gradient representing the spatial uncertainty of items 760

over the activation gradient representing the positional un- 761

certainty of items in the activation layer was unsuccess- 762

ful. Specifically, this single-stage model generated viola- 763

tions of both the positional and spatial locality constraints— 764

the transposition error and spatial error gradients both ex- 765

hibited marked non-monotonicities, at variance with the em- 766

pirical data. Note also that in modelling phonological sim- 767
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ilarity effects in human verbal STM, the current dominant 768

view is that a two-stage sequence production process is re-769

quired, with the detrimental effects of phonological similar-770

ity occurring downstream of an initial serial ordering stage771

(Burgess and Hitch 1999; Henson 1998; Page and Norris772

1998).773

Although all errors generated by the model depend upon774

the parallel sequence dynamics of the competitive queu-775

ing mechanism, the occurrence of certain errors is a con-776

sequence of the specific way serial order is represented.777

Protrusion errors are a consequence of the representation778

of serial order via position marking. The fill-in effect is a779

consequence of the representation of serial order by a pri-780

macy gradient coupled with response suppression. If the lat-781

ter two mechanisms are eliminated, then the resulting model782

(restrictPM) predicts the same frequency of fill-in and infill783

events (this is because after item i has been recalled a posi-784

tion too soon, items i – 1 and i + 1 will be activated to an785

equivalent degree by the position marker for the next output786

position), at variance with the monkey’s performance. The787

primacy gradient is also necessary to explain the extensive788

primacy effect and flattening of the spatial error gradients789

over output positions. When this mechanism is eliminated790

(restrictPM+RS and restrictPM), the primacy effect is greatly791

abated and the spatial error gradients over output position792

become superimposed on one other. The main source of793

evidence for response suppression is the scarcity of repeti-794

tions exhibited by the model, and the increase in these errors795

across output positions. The latter result arises due to the796

gradual wearing off of response suppression over output po-797

sitions. When this mechanism is eliminated from the model798

(restrictPG+PM and restrictPM), much higher levels of recall799

accuracy are observed at the third and fourth output posi-800

tions than observed empirically. This is because to compen-801

sate for the omission of response suppression, higher lev-802

els of accuracy at these positions are required to prevent the803

model from generating excessive levels of erroneous repeti-804

tions.805

Potential limitations and future directions806

Although the model provides an excellent account of the ob-807

served hallmark effects, there are some limitations of the808

current modelling exercise. First, the data and modelling are809

based on a single animal. The theoretical inferences drawn810

here will therefore need to be verified by showing that the811

animal’s ISR performance is representative of other animals812

of the same species. Of particular interest is whether the813

absence of recency is a defining feature of the ISR perfor-814

mance of macaque monkeys in general. It is noteworthy that815

Fagot and De Lillo (2011) also failed to observe recency in816

their study of the ISR performance of two baboons, tenta-817

tively suggesting that recency in ISR is a uniquely human818

attribute. However, in their study recency was merely ab-819

sent, whereas in Botvinick et al (2009) recency was present 820

but in a negative, rather than a positive, direction. Second, 821

the explanation of negative recency in terms of selective en- 822

coding is speculative. As noted by Botvinick et al (2009) it 823

could have been the consequence of the relatively long dura- 824

tion of recall (7.5 s on average for three-item lists and 10.9 825

s on average for four-item lists) providing the opportunity 826

for time-based decay or interference of memory represen- 827

tations. In modelling the present data, I considered this as 828

well as several other competing explanations, however, in 829

practice the selective encoding account was the only mecha- 830

nism by which I was able to reproduce negative recency and 831

the correct underlying distributions of recall errors. 832

Although the monkey’s ISR performance is qualita- 833

tively consistent with that of humans—negative recency 834

notwithstanding—the maximum number of items it can re- 835

tain is evidently much smaller. The sharp drop in recall per- 836

formance after the second serial position implies a memory 837

span of around two-items, an empirical estimate that harmo- 838

nizes well with the results obtained in other serial memory 839

studies with primates (Barone and Joseph 1989; Funahashi 840

et al 1997; Ninokura et al 2003; Scarf et al 2011). Human 841

adults, by comparison, have a memory span in the region 842

of six-items or greater. One question for future work is how 843

to explain these different memory limits in the model out- 844

lined here? In some competitive queuing models—known as 845

normalised competitive queuing models (Bullock 2004)— 846

the recurrent excitation and lateral inhibition implemented 847

in the selection layer is also instantiated in the activation 848

layer but in a way that encourages the maintenance of an ac- 849

tivation pattern, rather than a winner-takes-all competition. 850

The effect of this is to impose a neural bandwidth limit on 851

the activation layer’s capacity to maintain the relative prior- 852

ity of a set of parallel activated memory representations. It 853

is possible that the smaller capacity limit seen in primates 854

is the result of less available neural bandwidth with which 855

to support parallel activated representations, perhaps due to 856

weaker levels of self-excitation or stronger levels of lateral 857

inhibition. 858

Concluding remarks 859

The present computational simulation study provides pro- 860

visional evidence that four mechanisms of human ISR— 861

competitive queuing, position marking, a primacy gradient, 862

and response suppression—are implicated in the representa- 863

tion and generation of serial order in rhesus monkeys. The 864

observation of these mechanisms in a species of old world 865

monkey implies that they are ancient features in the evolu- 866

tion of primates rather than bespoke components of human 867

cognition. This in turn suggests that the same mechanisms 868
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might support sequential memory processing in other pri- 869

mate species.870
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