Modelling spatial immediate serial recall performance in a macaque (*Macaca mulatta*)

Mark Hurlstone
University of Western Australia

Mark J. Hurlstone
School of Psychology
35 Stirling Highway
University of Western Australia
Crawley WA 6009
email: mark.hurlstone@uwa.edu.au
Tel: +61 8 6488 3249
URL: http://mark-hurlstone.github.io

Conflict of interest: The author declares that he has no conflict of interest.
Modelling spatial immediate serial recall performance in a macaque (*Macaca mulatta*)

Abstract Botvinick et al (2009) examined the immediate serial recall (ISR) capabilities of a rhesus macaque using a spatial short-term memory task akin to that employed in human memory studies. They found that the monkey’s performance exhibited several hallmark effects of human ISR, suggesting that computational mechanisms of human short-term serial order memory may therefore be appropriate for understanding ISR in some nonhuman primate species. Here I applied a computational model of short-term memory that instantiates four core mechanisms of human ISR—competitive queuing, position marking, a primacy gradient, and response suppression—to their monkey’s data. The model provided an excellent account of the monkey’s ISR performance and its capacity to do so was greatly diminished when one or more of the mechanisms was eliminated from the model, suggesting that all four mechanisms—rather than a restricted set of those mechanisms—is required to explain the data. The results of the current simulation study suggest that common mechanisms may underpin short-term serial order memory across species.

Keywords Serial order · Macaque · Short-term memory

The ability to encode, store, and recall arbitrary fixed sequences of items, actions, and events is a fundamental human cognitive skill. This kind of sequence learning has been studied extensively in humans using the immediate serial recall (ISR) task in which participants are given novel sequences of verbal, visual, or spatial items that they must subsequently recall in the correct order. Considerable progress has been made in understanding the cognitive components underpinning this seemingly simple task thanks to the development of several computational models of short-term memory that explain detailed aspects of the human ISR data using explicit mechanisms for the representation of serial order (Botvinick and Plaut 2006; Brown et al 2000; Burgess and Hitch 1999; Farrell and Lewandowsky 2002; Hartley et al 2016; Henson 1998; Lewandowsky and Farrell 2008; Page and Norris 1998). The analysis of recall error data have played an instrumental role in constraining these models. For example, error analyses have ruled out chaining models in which order is stored through item–item associations (Farrell et al 2013; Henson et al 1996), and conferred support instead for positional models in which order is stored through position–item associations (Conrad 1960; Henson 1999; Ryan 1969a,b).

The ability to learn arbitrary fixed sequences is not unique to humans. Indeed, non-human primates (hereafter, ‘primates’) possess a remarkable capacity for mastering serial tasks. Monkeys can encode and reproduce the order of arbitrary fixed sequences of visual images (Chen et al 1997; Orlov et al 2000; Terrace 2005) numerals (Inoue and Matsuzawa 2007; Matsuzawa 1985; Kawai and Matsuzawa 2000), and spatial targets (Barone and Joseph 1989; Kermadi and Joseph 1995). They can remember sequences containing as many as seven elements (Chen et al 1997) and their performance on serial tasks has sometimes been shown
A schematic of the spatial ISR task used by Botvinick et al (2009). The items were locations contained within a 3×3 visually presented grid. (A) At the start of a trial, the central location was illuminated and the animal was required to move a blue cursor from another location into the central location using a joystick, which caused the cursor to turn yellow. (B-D) Following the temporary disappearance of the cursor, a sequence of three or four locations—depending on the list-length; three in this example—was conveyed to the observing animal by highlighting an arbitrary sub-set of locations red, one location at a time. (E) Following a brief delay, the blue cursor re-appeared in the central location cueing the animal to reproduce the just observed sequence. (F) The animal used the joystick to move the blue cursor to the location corresponding to the first serial position—holding it in place briefly until the response was registered by the computer—before repeating this process for the locations corresponding to the second (G) and third (H) serial positions (and the location corresponding to the fourth serial position when the sequence length was four-items). Figure adapted from Botvinick et al (2009).

Notwithstanding these similarities, as noted by Botvinick et al (2009), until recently comparisons of the sequence processing capabilities of humans and primates had been hampered by the fact that studies with the two groups have employed different tasks. The primate studies have predominantly employed a serial learning paradigm (Terrace 2005) in which monkeys gradually acquire sequences over multiple encoding and recall attempts using a forward training procedure—e.g., to acquire the sequence $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow G$, the subject is trained to respond A initially, then $A \rightarrow B$, then $A \rightarrow B \rightarrow C$, and so on and so forth until the entire sequence can be produced. As such, these studies probe long-term memory for serial order, rather than short-term memory for serial order—the competency indexed by the ISR task used with humans.

This gap in the literature was recently filled by two studies that examined the sequence processing abilities of a single rhesus macaque (Botvinick et al 2009) and two baboons (Fagot and De Lillo 2011) using an ISR task for sequences of spatial locations similar to that used to investigate serial spatial short-term memory in humans (Jones et al 1995; Smyth and Scholey 1996). Although both studies showed that the ISR performance of monkeys exhibits attributes of human ISR—notably list length and serial position effects (see below)—the study of Botvinick et al (2009) is especially noteworthy, since these authors evaluated their monkey’s performance with reference to several benchmark characteristics of human ISR, which included a detailed analysis of recall error data.

The spatial ISR task employed by Botvinick et al (2009) is illustrated graphically in Fig 1. The to-be-remembered items were spatial locations (square icons) contained within a 3×3 visually presented grid. On each ISR trial, a sequence of either three or four locations was conveyed by sequentially highlighting a random sub-set of the locations, after which the animal’s task was to reproduce the sequence using a joystick controlled cursor. The monkey’s perfor-
performance on this task exhibited several hallmarks of human ISR, which are described in the foregoing sub-sections.

List length effect
In humans, ISR performance for lists composed of verbal items (Crannell and Parrish 1957; Maybery et al 2002) and spatial items (Jones et al 1995; Smyth and Scholey 1996) decreases as the length of the target sequence to-be-recalled increases—a result dubbed the list length effect.

Fig 2A shows the accuracy serial position curves for three- and four-item lists for the monkey’s performance. Consistent with the list length effect in human ISR, it can be seen that recall accuracy was lower for four- than three-item lists.

Primacy and recency effects
A hallmark feature of human ISR is the presence of serial position effects on performance. Recall accuracy decreases sharply from the first position onwards (viz. the primacy effect), with an upturn in performance for the final item (viz. the recency effect), yielding an asymmetrically bowed serial position curve. Primacy and recency effects are a characteristic of both verbal ISR (Baddeley 1968; Henson et al 1996) and spatial ISR (Jones et al 1995; Smyth and Scholey 1996) performance in humans.

Consistent with the human ISR data, it can be seen from Fig 2A that the monkey exhibited a pronounced primacy effect. However, at variance with those data it did not exhibit a positive recency effect. Indeed, the monkey actually showed a negative recency effect, with the accuracy of recall of the final item on three- and four-item lists being lower than for the penultimate item.

Transposition error gradients
A large proportion of errors in human ISR are order errors involving the recall of items in the wrong serial positions. These transposition errors exhibit a tendency to cluster around their correct serial positions—an empirical regularity known as the locality constraint (Henson 1996). Accordingly, when the probability of a transposition is plotted as a function of transposition distance—viz. the ordinal distance of the transposed item from its correct position—
the resulting gradients peak for one-apart transpositions and with the number of transpositions decreasing monotonically with increasing transposition distance. The locality constraint is a robust feature of both verbal ISR (Henson 1996; Lewandowsky and Farrell 2008) and spatial ISR (Hurlstone and Hitch 2015; Parmentier et al 2006; Smyth and Scholey 1996) performance in humans.

The transposition gradient for four-item lists associated with the monkey’s performance can be inspected in Fig 2B from which it can be seen that transpositions obeyed the locality constraint observed in humans.

Item similarity effect

Errors in human ISR sometimes involve confusions between items that share similar characteristics. In verbal ISR, such confusions are based on phonology as evidenced by the phonological similarity effect (Baddeley 1966, 1968; Conrad and Hull 1964)—lists of phonologically similar sounding items (e.g., B D G P T V) are recalled less accurately than lists of phonologically dissimilar sounding items (e.g., e.g., F K L R X Y). In spatial short-term memory, item confusion errors occur on the basis of the spatial proximity of items (Hitch, 1974). Accordingly, when errors are plotted as a function of spatial proximity to the correct item, the probability of an error decreases monotonically with increasing spatial distance—viz. a locality constraint over the spatial, as opposed to temporal, distance between items (Hitch 1974; Rerko et al 2014). In human spatial ISR, the magnitude of such spatial errors is known to interact with serial position (Farrand and Jones 1996; Farrand et al 2001).

Fig 2C plots the aggregate spatial error gradients for three- and four-item lists for the monkey’s performance (in the figure, spatial proximity is represented using a Manhattan distance metric). Consistent with the locality constraint, the gradients peak for one-apart spatial errors and decrease monotonically with increasing spatial distance. The gradient is also steeper for three- than four-item lists. Fig 2D plots the individual spatial error gradients for the second, third, and fourth output positions in four-item lists. It can be seen that the distribution of spatial errors interacts with serial position, with the error gradients becoming shallower at later output positions.

In brief, consistent with the data from human spatial ISR the monkey’s performance was sensitive to the spatial similarity of items, and additionally this spatial similarity effect interacted with serial position.

Repetition errors

Repetition errors—viz. the repeated report of an item presented only once on the study list—are very rare in human verbal (Henson 1996; Yousden and Brown 1998) and spatial ISR (Hurlstone and Hitch 2015), accounting for around 1% (Hurlstone and Hitch 2015) to 5% (Henson 1996) of all responses. The frequency of repetitions in human ISR is known to increase with serial position (Henson 1996).

The repetition error serial position curves for three- and four-item lists for the monkey’s performance are shown alongside the accuracy serial curves in Fig 2A. Consistent with the human ISR data, erroneous repetitions were rare and their frequency increased across output positions.

Fill-in errors

Transposition errors in human ISR exhibit a particular pattern of sequential dependency. If an item i is recalled a position ahead of its correct position (e.g., recalling Bx following the list ABC), item i – 1 is more likely to be recalled at the next output position (e.g., BAx; known as a fill-in error) than item i + 1 (e.g., BxC; known as an infill error). Specifically, fill-in errors outweigh infill errors by a ratio of approximately 2:1 in both verbal ISR (Farrell et al 2013; Henson 1996; Page and Norris 1998; Surprenant et al 2005) and spatial ISR (Guérard and Tremblay 2008).

This fill-in tendency is also a feature of the monkey’s ISR performance, which contained 46 fill-in errors and 10 infill errors, yielding a ratio of 4.6:1.

Protrusion errors

In human ISR, items that were not part of the study list sometimes intrude into participant’s recalls. These errors often take the form of immediate intrusions, which occur when a participant recalls an item from trial N – 1 on trial N despite the item not being present on the study list for that trial. When these immediate intrusion errors occur they often maintain their serial position from trial N – 1 (Conrad 1960; Henson 1996, 1999). These position-preserving intrusions are known as protrusion errors (Henson 1996) and their frequency of occurrence is greater than would be expected by chance alone.

The monkey’s ISR performance was also characterised by protrusions. Out of 157 immediate intrusion errors on four-item lists, 51 (32.5%) were protrusion errors that maintained their position from the preceding trial—a rate greater than would be expected by chance (25%; viz. 1/n—where n is the list length).

Current study

As noted by Botvinick et al (2009), the correspondence between the monkey’s ISR performance and that of humans
is striking and suggests that the mechanisms of serial order embodied in computational models of serial order in human short-term memory might be extensible to some primate species. The aim of the current study is to provide a formal test of this possibility by applying a computational model that implements the representational mechanisms that have been found to underpin human ISR to their monkey’s data to establish if these mechanisms—or a restricted set of these mechanisms—can reproduce his behavioural results.

The model is based on competitive queuing models of serial behaviour (Glasspool 2005; Houghton 1990)—the dominant class of models of human ISR (Brown et al 2000; Burgess and Hitch 1999; Farrell and Lewandowsky 2002; Henson 1998; Page and Norris 1998). In competitive queuing models, items are activated in parallel and the item with the strongest activation level is selected for output. There is already direct evidence that primates utilise the competitive queuing mechanism based on electrophysiological recording data obtained whilst rhesus monkeys performed a serial imitation task (Averbeck et al 2002, 2003a,b). In the competitive queuing model examined here, serial order is represented by forming associations between items and a representation of the their ordinal sequence position (viz. position marking), by encoding each item with progressively less strength (viz. a primacy gradient), and by suppressing items in memory once they have been recalled (viz. response suppression). There is considerable evidence that these four mechanisms are implicated in the representation of serial order in short-term memory in humans (Hurlstone et al 2014; Lewandowsky and Farrell 2008).

A generic competitive queuing model of spatial ISR

Model architecture

Fig 3 shows a schematic of the architecture of the competitive queuing model, which comprises three distinct layers of units—a context layer, an activation layer, and a selection layer. The context layer maintains a distributed representation of the current position in the list, whereas the activation and selection layers implement a localist coding scheme, whereby each unit corresponds to a different item (location) in the 3 × 3 visually presented grid (Fig 1). The context layer and activation layer are connected by a Hebbian weight matrix within which short-term associations between items and a representation of their position are stored. Each unit in the activation layer has a connection to all other units in the selection layer. The strength of these connections reflect the similarity between each location with itself, and all other locations in the visual grid. Accordingly, the connection is strongest between each unit in the activation layer and its corresponding unit in the selection layer, with the strength of connections between all other units decreasing as an exponential function of their spatial distance from one another. Formally, the strength of the connection w_{ij}^{AS} between each unit j in the activation layer and each unit i in the selection layer is given by:

$$w_{ij}^{AS} = e^{-cd_{ij}},$$ (1)

where d_{ij} is the Manhattan distance between item i and item j, which is given by:

$$d_{ij} = \sum_{l=1}^{k} |a_l - b_l|,$$ (2)

where the two-element vectors a and b represent item i’s and j’s coordinates within the spatial array (Fig. 1), respectively, and l indexes the k dimensions of each vector. The parameter c in equation 1 is a sensitivity parameter that governs the rate at which similarity between items decreases with increasing spatial distance.

![Diagram](https://example.com/diagram.png)
In addition to the weighted connections from the activated layer, each unit in the selection layer has a self-excitatory connection and lateral inhibitory connections to all other units in the selection layer. Each unit in the selection layer also has an inhibitory connection to its corresponding unit in the activation layer.

Encoding

The position of each item in a serial list is represented by a 16-element distributed context vector (with values between -1 and +1) constructed so that the cosine similarity between any pair of vectors decreases as an exponential function of their absolute ordinal distance (Farrell 2006):

$$\cos(c_p, c_q) = \phi(p-q),$$ \hspace{1cm} (3)

where c_p and c_q are context vectors for positions p and q, respectively, and ϕ is a parameter controlling the rate at which similarity drops off with increasing ordinal distance.

The encoding of a list of items within the network is carried out by imposing the context vector representing the current list position over the context layer, activating the just presented item in the activation layer—viz. setting its unit’s activation to 1, and the activation of all other units to 0—and modifying the strength of the weight w_{ij}^{CA} connecting each unit i in the activation layer and each unit j in the context layer via Hebbian learning:

$$\Delta w_{ij}^{CA} = \eta_p a_i^{A} d_j^C,$$ \hspace{1cm} (4)

where a_i^{A} is the activation of unit i in the activation layer, d_j^C is the activation of unit j in the context layer, and η is a learning rate parameter that governs the strength of the context-item associations. Specifically, the strength of these associations decreases exponentially across list positions according to a primacy gradient of encoding strength:

$$\eta_p = \theta^{p-1},$$ \hspace{1cm} (5)

where θ is a parameter determining the steepness of the primacy gradient over list positions.

The process just described encodes serial order through position–item associations (viz. position marking). However the primacy gradient in encoding strength means that the representation of order contains an ordinal, as well as a positional, component. Evidence that rhesus monkeys use position–items associations has been obtained from positional intrusion errors in a delayed sequence-recall task (Orlov et al 2000, 2002, 2006).

At retrieval the context vector for the current recall position is reinstated in the context layer and presented to the weight matrix connecting it with the activation layer. The net input to each item unit i in the activation layer net_i^A is given by:

$$net_i^A = \sum j a_j^C w_{ij}^{CA} + \varepsilon(0, \delta^A),$$ \hspace{1cm} (6)

where a_j^C and w_{ij}^{CA} are the same as before. This generates an activation gradient over the item units such that the unit corresponding to the item presented at the position being cued will be activated strongest, with the activation of units corresponding to neighbouring list-items falling off as their ordinal distance from the cued item on the presented list increases. The activations elicited by the reinstated context vector are augmented with zero-mean Gaussian noise ε with standard deviation δ^A to simulate transposition errors.

A key feature of the competitive queuing approach is that items are temporarily inhibited once they have been output by setting their activations to negative values. Accordingly, some mechanism is required to ensure that suppressed items are briefly removed from the response competition. To accomplish this, the activation of each item unit i in the activation layer a_i^A is subject to the following activation function:

$$a_i^A(p) = \begin{cases} net_i^A(p) & \text{if } net_i^A(p) - 1 \geq 0, \\ net_i^A(p) + a_i^A(p-1) \exp(-\lambda) & \text{otherwise}, \end{cases}$$ \hspace{1cm} (7)

To explain, if the activation of unit a_i^A at position $p-1$ is equal to or greater than zero—viz. if that unit is not in a suppressed state—then its activation at position p is based on the net input elicited by the reinstated context vector only, otherwise its activation is the joint combination of the net input elicited by the reinstated context vector and its current negative activation value. The activation values of suppressed items gradually recover from inhibition over recall positions, with the extent of this release from inhibition being governed by the parameter λ.

The most active item unit in the activation layer propagates its activation along its weighted connections to each unit in the selection layer. The initial input to each unit i in this layer a_i^S is given by:

$$a_i^S = a_i^A w_{iwin}^{AS} + \varepsilon(0, \delta^S),$$ \hspace{1cm} (8)

where a_i^A is the activation of the winning item unit win in the activation layer and w_{iwin}^{AS} is the weight of its connection with each unit i in the selection layer, which is governed by equations 1 and 2. This results in the item unit in
the selection layer corresponding to the winning item in the output layer are stored on a common weight matrix. The item unit activations in the selection layer are supplemented with zero-mean Gaussian noise ε with standard deviation δS in order to simulate spatial errors. The activations of item units in the selection layer are iteratively updated over time according to the following equation:

\[\text{int}_i^S(t) = a_i^S(t-1) \alpha + \beta \sum_{j \neq i} a_j^S(t-1) + \epsilon(0, \delta^S), \quad (9) \]

where \(\text{int}_i^S(t) \) is the internal activation—viz. the net input a unit receives from within the selection layer—of item unit \(i \) at time \(t \), \(a_i^S(t-1) \) is its activation at the preceding time step, \(a_j^S(t-1) \) is the activation of each other item unit \(j \) at the preceding time step, \(\alpha \) is the strength of the self-excitatory connections (\(\alpha = 1.1 \)), \(\beta \) is the strength of the lateral-inhibitory connections (\(\beta = -0.1 \)), and \(\epsilon \) and \(\delta^S \) are as before. Equation 9 implements a winner-takes-all “competitive filter” (Houghton 1990), which selects the most active item for output. The initially most active item unit has the advantage that it will send more activation to itself than any other item unit, and will also receive the least lateral inhibition. As the unit activations are iteratively updated over time this results in a gradual increase in the activation of the strongest unit, and a gradual decrease in the activations of the weaker units as they receive more lateral inhibition.

The competitive filter is applied for a fixed duration of 20 iterative cycles—sufficient time to identify an unambiguous response. The item with the strongest activation level at the end of this period constitutes the network’s response for the current recall position. The recall of an item is followed by the suppression of its unit’s activation in the activation layer by setting its activation level to a fixed suppressed value \(\tau \) of -1. This implements the mechanism of response suppression, which is a core ingredient in competitive queuing models. It was also assumed that the process of generating an item for output adds noise to the representations of yet-to-be-recalled items—an assumption known as output interference. Consistent with other network models of serial recall (Brown et al. 2000; Lewandowsky and Farrell 2008), this output-contingent interference was modelled by adding zero-mean Gaussian noise with standard deviation \(\delta^{wCA} \) to each of the context-item weights linking the activation and context layers following the output of each item (\(\delta^{wCA} = .04 \)).

To model protrusion errors, the context-item weights were normalised so that recent weight changes were more influential than earlier weight changes.

Modelling negative recency

One challenge in modelling the monkey’s data is capturing the negative recency effect. This effect is difficult to reproduce using the model just described because competitive queuing models are by design configured to generate a recency (along with a primacy) effect. There are several factors that promote recency in the current model. One factor is “edge effects”—because the last item only has neighbouring competitors on one side of the list it will be recalled with a higher level of accuracy than items at medial serial positions, which have neighbouring competitors on both sides of the list. Another contributing factor is response suppression—as recall progresses, the cohort of recall candidates gradually winnows down due to the suppression of items already emitted, which increases the likelihood that the final item will be assigned to its correct position.

Modelling the negative recency effect is necessary not just in terms of providing an explanation for its presence in the monkey’s data but because it is impossible to recreate the distributions of the various different errors without modelling the sharp decline in recall accuracy toward the end of the list. How then to explain this result? One explanation offered by Botvinick et al (2009) is that it might be due to interference caused by irrelevant events—including a tone and a juice reward—that were interspersed between each recall episode. This interference is not dissimilar to the output interference implemented in the current model and provides an additional precedent for its incorporation. However, output interference alone was found to be insufficient to generate the sharp drop in recall over the final two serial positions. Another possibility—and the explanation pursued here—is that this effect reflects the action of a selective encoding strategy adopted during the encoding of serial lists. This account supposes that the monkey allocated most of his attention to encoding the first and second item in each list, with a subsequent sharp drop in the attention allocated to encoding the third item (in three- and four-item lists), and a further abrupt drop in the attention allocated to encoding the fourth item (in four-item lists).

This selective encoding strategy was implemented through the following modification to equation 2 that generates the primacy gradient governing the encoding strength of the context-item associations across serial positions:

\[\eta_p = \begin{cases}
\theta^{p-1} & \text{if } p \leq 2, \\
\theta^{p+1} & \text{if } p = 3, \\
\theta^{p+3} & \text{if } p = 4,
\end{cases} \quad (10) \]
The encoding strength of the first two items in the list is calculated in the same way as in equation 2. However, the encoding strength of the third item (on three- and four-item lists) is calculated as though this were the fifth item on a longer sequence, whilst the encoding strength of the fourth item (on four-item lists) is calculated as though this were the eighth item on a longer sequence. As desired, this produces a sharp drop in encoding strength from input position 2 to 3, and another sharp drop in encoding strength from input position 3 to 4.

Model fitting procedure

The to-be-fitted data consisted of the following behavioural measures (27 data points in total): (1) accuracy serial position curves (seven data points), (2) repetition serial position curves (seven data points), (3) transposition gradient (three data points), (4) aggregate spatial error gradients (eight data points), (5) proportion of fill-in to infill errors (one data point), and (6) proportion of immediate intrusion errors that were protrusions (one data point). Data for both list-lengths were used for behavioural measures 1, 2, and 4, whereas only the data for four-item lists were used for the other behavioural measures (consistent with the reporting of these data by Botvinick et al 2009).

To fit the model, predictions were generated for the above measures for a set of starting model parameter values and the discrepancy between the data and model predictions was evaluated using the Pearson chi-square statistic:

$$ \chi^2 = N \sum_i \frac{p_i - \bar{p}_i}{\bar{p}_i}, $$

(11)

where p_i is the observed proportion for data point i, \bar{p}_i is the corresponding proportion predicted by the model, and N is the number of observations. Since the chi-square statistic was calculated using observed and predicted proportions, rather than frequencies, the value of N was simply set to 100.

The parameters of the model were varied systematically using the SIMPLEX function minimisation algorithm (Nelder and Mead 1965) until a minimum value of the chi-square statistic was obtained. Each parameter vector explored by the minimisation algorithm involved 2500 simulation trials of three- and four-item lists.

The parameters that were varied during the fitting were the degree of similarity of the context vectors ϕ; the steepness of the primacy gradient in encoding strength θ; the amount of decay from response suppression λ; the sensitivity parameter controlling the degree of confusability of items in the selection layer δ; the amount of noise in the activation layer δ^A; and the amount of noise in the selection layer δ^S (six free parameters in total).

Model comparisons

The general model described above instantiates several different mechanisms. To ensure that the incorporation of each of these mechanisms is warranted and that the model is not over-specified, model comparisons were performed in which the fit of the general model was compared with that of several restricted model variants in which one mechanism (or several) in the general model were eliminated. Specifically, the fit of the general model was compared with that of three restricted model variants: (a) a model in which response suppression was eliminated (removing two parameters; viz. τ and λ), (b) a model in which the primacy gradient was eliminated (removing one parameter; viz. θ), and (c) a model in which the primacy gradient and response suppression was eliminated (removing three parameters; viz. θ, τ, and λ). These models were fit to the behavioural measures in exactly the same way as described for the general model, except that the parameters associated with the eliminated mechanisms were rendered inactive.

In addition to evaluating the models in terms of their best fitting chi-square statistics, the Bayesian information criterion (BIC, Schwarz, 1978) was calculated. The BIC is an index that takes into consideration both a model’s goodness of fit and its number of model parameters. The BIC was calculated as:

$$ \text{BIC}_i = V_i \ln(n) + n \ln \left(\frac{RSS_i}{n} \right), $$

(12)

where V_i is the number of free model parameters, n is the number of data points being fitted, RSS is the residual sum of squares, and i indexes the model for which BIC is being calculated.

To aid interpretation, the raw BIC scores were converted into BIC weights (Burnham and Anderson 2002; Wagenmakers and Farrell 2004), which express the degree of support for each model on a continuous measure of evidence. The BIC weight for model i was calculated by:

$$ w_{\text{BIC}_i} = \frac{\exp(-0.5 \Delta \text{BIC}_i)}{\sum_k \exp(-0.5 \Delta \text{BIC}_k)}, $$

(13)

where ΔBIC_i is the difference in BIC between model i relative to the best model, and each ΔBIC_k is the difference in BIC between a specific model k in the candidate set \mathcal{K} and the best model.

Simulation Results

The goodness-of-fit quantities for the general model and the three restricted model variants can be scrutinised in Table 1. It can be seen by inspection that the general model obtained...
Table 1 Goodness-of-fit quantities for the general model and the three restricted model variants.

<table>
<thead>
<tr>
<th>Model</th>
<th>V</th>
<th>χ^2</th>
<th>BIC</th>
<th>ΔBIC</th>
<th>wBIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>7</td>
<td>104.91</td>
<td>-102.22</td>
<td>66.57</td>
<td>0</td>
</tr>
<tr>
<td>restrict$^{PG+PM}$</td>
<td>5</td>
<td>120.69</td>
<td>-93.93</td>
<td>74.86</td>
<td>0</td>
</tr>
<tr>
<td>restrict$^{PM+RS}$</td>
<td>6</td>
<td>114.51</td>
<td>-99.28</td>
<td>75.51</td>
<td>0</td>
</tr>
<tr>
<td>restrictPM</td>
<td>4</td>
<td>101.10</td>
<td>-90.28</td>
<td>64.86</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: $V =$ number of free model parameters; $\chi^2 =$ Pearson chi-square statistic; BIC = Bayesian information criterion; ΔBIC = difference in BIC with respect to the best fitting model; wBIC = BIC weight. The bold item indicates the best fitting model.

The accuracy serial position curves predicted by the general model are shown in Fig 4A. It is apparent from inspection of this figure that the general model predicted a small list length effect, an extensive primacy effect, and a negative recency effect consistent with the empirical data (Fig 2A). The list-length effect arises in the model because the more items in the list, the greater the probability there will be at least one error. The primacy effect is attributable to the primacy gradient in the encoding strength of items, whilst the negative recency effect is the result of the selective encoding strategy built into the primacy gradient, which causes an abrupt drop in encoding strength toward the end of the list thereby counteracting the mechanisms that promote recency.

Table 2 Fixed and free parameter values for the general model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>Recurrent self-excitation</td>
<td>1.1</td>
</tr>
<tr>
<td>β</td>
<td>Lateral inhibition</td>
<td>-0.1</td>
</tr>
<tr>
<td>τ</td>
<td>Level of response suppression</td>
<td>-1</td>
</tr>
<tr>
<td>δCA</td>
<td>Degree of output interference</td>
<td>0.04</td>
</tr>
<tr>
<td>Free parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>Similarity of context vectors</td>
<td>0.6755</td>
</tr>
<tr>
<td>θ</td>
<td>Steepness of primacy gradient</td>
<td>0.7827</td>
</tr>
<tr>
<td>λ</td>
<td>Decay from response suppression</td>
<td>0.1631</td>
</tr>
<tr>
<td>c</td>
<td>Item confusability in selection layer</td>
<td>0.0713</td>
</tr>
<tr>
<td>δ^A</td>
<td>Noise applied to activation layer</td>
<td>0.0480</td>
</tr>
<tr>
<td>δ^S</td>
<td>Noise applied to selection layer</td>
<td>0.0055</td>
</tr>
</tbody>
</table>

Transposition error gradient

Consistent with the empirical transposition gradient for four-item lists (Fig 2B), the transposition gradient predicted by the general model for the same list length shows a positional locality constraint—the gradient peaks for one-apart transpositions and then decreases monotonically with increasing transposition distance (Fig 4B). Thus, when an item was recalled in the wrong position, it tended to be recalled in a position close to its correct position. In the model, the positional locality constraint arises due to the local self-similarity of the context signal—neighbouring states (viz. adjacent serial positions) of context are more similar to one another than states that are separated in ordinal distance (viz. non-adjacent serial positions). This means that when a context pattern is presented to the activation layer, items that are close in ordinal distance to the target item will be activated more strongly than items that are far from the target item in ordinal distance. Accordingly, when the item unit activations are augmented with noise, near-neighbour transpositions will be more likely than distant-neighbour transpositions.

Spatial error gradients

As well as predicting a locality constraint for transposition errors, the general model predicted a locality constraint for spatial errors. In accordance with the monkey’s data (Fig 2C), the aggregate spatial error gradients predicted by the model peak for one-apart spatial errors, with the frequency of errors decreasing monotonically with increasing spatial distance, and additionally, the aggregate spatial error gradient is steeper for three- than for four-item lists (Fig 4C). Furthermore, it can be seen from inspection of Fig 4D that the general model captured the reduction in slope of the individual spatial error gradients with increasing output position for four-item lists that is a feature of the monkey’s ISR performance (Fig 2D). In the model, the spatial locality con-
Fig. 4 Predictions of the general model for the four key behavioural measures: (A) accuracy and repetition error serial position curves, (B) transposition error gradient for four-item lists, (C) aggregate spatial error gradients, and (D) spatial error gradients for the second, third, and fourth output position in four-item lists.

The repetition error serial position curves predicted by the general model are shown in Fig 4A. Consistent with the empirical data (Fig 2A), repetitions were infrequent and their probability increased with output position. The scarcity of repetitions in the model is due to the operation of response suppression—the suppression of a recalled item’s activation in the activation layer removes it briefly from the response competition, rendering it unlikely the item will be reported twice. The probability of repetitions increases with output position due to the greater time available for a suppressed item to recover from inhibition.

Protrusion errors

The general model predicted a protrusion rate of 31.24% (289 protrusions out of 925 immediate intrusions), which compares favourably with the rate of 32.5% (51 protrusions out of 150 immediate intrusions) exhibited by the monkey. Immediate intrusions arise in the model because the context-item associations formed on different trials are stored in a common Hebbian weight matrix—the associations formed on trial n will be superimposed on the associations established on all trials so far. Thus, when a context cue for a given position is presented to the activation layer on trial n, as well as activating the target item on trial n and neighbouring list competitors, the context cue will activate the target item and neighbouring list competitors from trial $n - 1$ (and to a lesser degree items from earlier trials whose associations are less strongly represented in the weight matrix due to the weight normalisation that occurs at the end of each trial, which gradually washes out the influence of these associations over time). With the addition of random noise to
item activations, sometimes the discrepancy between the activations of items from trial \(n \) and trial \(n - 1 \) will be bridged, triggering an intrusion. However, because the context-item association of the item on trial \(n - 1 \) that occupied the position being cued will bear a stronger similarity to the current context cue than the associations of items from different positions on trial \(n - 1 \), intrusions will most often be protrusions.

Fill-in errors

The general model produced a fill-in ratio of 3.88:1 (101 fill-in errors vs. 26 infill errors), which is slightly smaller than the observed ratio of 4.6:1 for the monkey’s data (46 fill-in errors vs. 10 infill errors). The predominance of fill-in events in the general model is attributable to the representation of serial order by a primacy gradient and response suppression. This means that when an item \(i \) is reported a position too soon and then suppressed, item \(i - 1 \) will be a stronger recall competitor at the next output position than item \(i + 1 \) because the former item—by virtue of occurring earlier on the study list—will have been encoded with greater strength on the primacy gradient.

Discussion

Summary of findings

Using computational simulations, the current study sought to establish whether the spatial ISR performance of a rhesus monkey could be explained in terms of the seriating mechanisms embodied in computational models of human ISR. The results suggest that four core mechanisms of human ISR—viz., competitive queuing, position marking, a primacy gradient, and response suppression—are also implicated in the representation and control of serial order in this primate species. The model comparisons confirmed that all four mechanisms are necessary to accurately reproduce the monkey’s performance. That is, the correspondence between the data and simulation results was severely compromised when one or more of the seriating mechanisms was eliminated from the general model. In what follows, I will describe those aspects of the monkey’s data that confer support for the different seriating mechanisms, consider some limitations of the current modelling exercise, and identify directions for future work.

Evidence for the four mechanisms

At the outset, it was noted that strikingly direct evidence has been obtained from electrophysiological recording data that rhesus monkeys use the competitive queuing mechanism to plan and produce sequences (Averbeck et al. 2002, 2003a,b). The results of the current simulation study provide converging evidence for this proposition by showing that a model based on competitive queuing principles can reproduce the key behavioural features of a rhesus monkey’s spatial ISR performance. To my knowledge, this is the first computational application of the competitive queuing mechanism to serial order behaviour in a primate.

It is the model’s capacity to reproduce the pattern of recall errors seen in the monkey’s spatial ISR performance that is most emblematic of the operation of the competitive queuing mechanism. Like all competitive queuing models, a defining feature of the current model is that items are (re)activated in parallel at retrieval. There are two sources of parallel response activation in the present model. The first originates from the cueing of items in the activation layer by the context vectors in the context layer. This results in the target item being activated maximally, with neighbouring items being activated based on their ordinal distance from the target item in the input list. The second originates from the retrieval of an item in the activation layer, which activates items in the selection layer based on their similarity to the retrieved item. Since the retrieved item will be most similar to itself, its unit will be activated maximally, whereas the activation of other units will fall off with increasing spatial distance from the retrieved item. The addition of moderate random noise to item units in the activation and selection layers is the basis by which the model generates transposition and spatial errors, respectively. Since the activations of items in both layers follow a gradient that is centred on the target item, transposition and spatial errors are most likely to involve items that are close in ordinal or spatial distance to the target item. It is this parallel gradient-based response activation in the activation and selection layers—and the two-stage sequence production process—that enables the model to reproduce the positional and spatial locality constraints that are key features of the monkey’s data.

The use of a two-stage sequence production process to model spatial errors might seem unparsimonious. Why not model spatial errors in the activation layer and do away with the selection layer? Empirically, the observation of both a positional and a spatial locality constraint suggests that the effects of positional and spatial uncertainty arise independently, rather than additively. Indeed, an attempt to model the data within a single stage by superimposing an activation gradient representing the spatial uncertainty of items over the activation gradient representing the positional uncertainty of items in the activation layer was unsuccessful. Specifically, this single-stage model generated violations of both the positional and spatial locality constraints—the transposition error and spatial error gradients both exhibited marked non-monotonocities, at variance with the empirical data. Note also that in modelling phonological sim-
ilarity effects in human verbal STM, the current dominan-
view is that a two-stage sequence production process is re-
quired, with the detrimental effects of phonological similarity
occurring downstream of an initial serial ordering stage
(Burgess and Hitch 1999; Henson 1998; Page and Norris
1998).

Although all errors generated by the model depend upon
the parallel sequence dynamics of the competitive queu-
ing mechanism, the occurrence of certain errors is a con-
sequence of the specific way serial order is represented.
Protrusion errors are a consequence of the representation
of serial order via position marking. The fill-in effect is a
consequence of the representation of serial order by a pri-
mary gradient coupled with response suppression. If the lat-
ter two mechanisms are eliminated, then the resulting model
(restrict\(^{PM}\)) predicts the same frequency of fill-in and infill
events (this is because after item \(i\) has been recalled a posi-
tion too soon, items \(i - 1\) and \(i + 1\) will be activated to an
equivalent degree by the position marker for the next output
position), at variance with the monkey’s performance. The
primacy gradient is also necessary to explain the extensive
primacy effect and flattening of the spatial error gradients
over output positions. When this mechanism is eliminated
(restrict\(^{PG+PM}\) and restrict\(^{PM}\)), the primacy effect is greatly
abated and the spatial error gradients over output position
become superimposed on one other. The main source of
evidence for response suppression is the scarcity of repeti-
tions exhibited by the model, and the increase in these errors
across output positions. The latter result arises due to the
gradual wearing off of response suppression over output po-
sitions. When this mechanism is eliminated from the model
(restrict\(^{PG+PM}\) and restrict\(^{PM}\)), much higher levels of recall
accuracy are observed at the third and fourth output posi-
tions than observed empirically. This is because to compen-
sate for the omission of response suppression, higher lev-
els of accuracy at these positions are required to prevent the
model from generating excessive levels of erroneous repeti-
tions.

Potential limitations and future directions

Although the model provides an excellent account of the ob-
erved hallmark effects, there are some limitations of the
current modelling exercise. First, the data and modelling are
based on a single animal. The theoretical inferences drawn
here will therefore need to be verified by showing that the
animal’s ISR performance is representative of other animals
of the same species. Of particular interest is whether the
absence of recency is a defining feature of the ISR perfor-
ance of macaque monkeys in general. It is noteworthy that
Fagot and De Lillo (2011) also failed to observe recency in
their study of the ISR performance of two baboons, tenta-
tively suggesting that recency in ISR is a uniquely human

Concluding remarks

The present computational simulation study provides pro-
visional evidence that four mechanisms of human ISR—
competitive queuing, position marking, a primacy gradient,
and response suppression—are implicated in the representa-
tion and generation of serial order in rhesus monkeys. The
observation of these mechanisms in a species of old world
monkey implies that they are ancient features in the evolu-
tion of primates rather than bespoke components of human
cognition. This in turn suggests that the same mechanisms

might support sequential memory processing in other pri
temate species.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human particip-
ants or animals performed by the author.

References

Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP (2002) Par-a-allel processing of serial movements in prefrontal cortex. Proceed-
ings of the National Academy of Sciences 99(20):13,717–13,777
Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP (2003a) Neu-
ral activity in prefrontal cortex during copying geometrical shapes:
I. single cells encode shape, sequence, and metric parameters. Ex-
perimental Brain Research 150(2):127–141
Averbeck BB, Crowe DA, Chafee MV, Georgopoulos AP (2003b) Neu-
ral activity in prefrontal cortex during copying geometrical shapes:
II. decoding shape segments from neural ensembles. Experimental
Brain Research 150(2):142–153
Baddeley AD (1966) Short-term memory for word sequences as a func-
tion of acoustic, semantic and formal similarity. The Quarterly
Baddeley AD (1968) How does acoustic similarity influence short-
term memory? The Quarterly Journal of Experimental Psychology
20(3):249–264
Barone P, Joseph JP (1989) Prefrontal cortex and spatial sequencing in
macaque monkey. Experimental Brain Research 78(3):447–464
(Pan troglodytes): Planning, executing, and monitoring. Journal of
Comparative Psychology 113(2):178–185
Botvinick MM, Plaut DC (2006) Short-term memory for serial or-
der: A recurrent neural network model. Psychological Review
113(2):201–233
Brown GD, Preece T, Hulme C (2000) Oscillator-based memory for
Bullock D (2004) Adaptive neural models of queuing and timing in flu-
ent action. Trends in Cognitive Sciences 8(9):426–433
of the phonological loop and its timing. Psychological Review
106(3):551–581
inference: A practical information-theoretic approach. New York,
NY: Springer-Verlag
Carpenter AF, Georgopoulos AP, Pellizer G (1990) Motor corti-
cal encoding of serial order in a context-recall task. Science
283(5408):1752–1757
Chen S, Swartz KB, Terrace H (1997) Knowledge of the ordinal
position of list items in rhesus monkeys. Psychological Science
8(2):80–86

Conrad R (1960) Serial order intrusions in immediate memory. British
Conrad R, Hull AJ (1964) Information, acoustic confusion and mem-
Cranpell CW, Parrish JM (1957) A comparison of immediate mem-
ory span for digits, letters, and words. The Journal of Psychology
44(2):319–327
D’Amato M, Colombo M (1988) Representation of serial order in mon-
kies (Cebus apella). Journal of Experimental Psychology: Animal
Behavior Processes 14(2):131–139
D’amato M, Colombo M (1989) Serial learning with wild card items
by monkeys (Cebus apella): Implications for knowledge of ordinal
position. Journal of Comparative Psychology 102(3):252
Fagot J, De Lillo C (2011) A comparative study of working memory:
Immediate serial spatial recall in baboons (Papio papio) and hu-
mans. Neuropsychologia 49(14):3870–3880
serial short term memory. The Quarterly Journal of Experimental
Psychology: Section A 49(1):140–158
Farrand P, Parmentier FB, Jones DM (2001) Temporal–spatial mem-
ory: Retrieval of spatial information does not reduce recency. Acta
Psychologica 106(3):285–301
79
Farrell S, Hurlstone MJ, Lewandowsky S (2013) Sequential dependen-
cies in recall of sequences: Filling in the blanks. Memory & Cog-
nition 41(6):938–952
Funahashi S, Inoue M, Kubota K (1997) Delay-period activity in
the primate prefrontal cortex encoding multiple spatial posi-
tions and their order of presentation. Behavioural Brain Research
84(1):203–223
from performance slips. In: Connectionist models in cognitive psy-
Guérard K, Tremblay S (2008) Revisiting evidence for modularity and
functional equivalence across verbal and spatial domains in mem-
ory. Journal of Experimental Psychology: Learning, Memory, and
Cognition 34(3):556–569
Hartley T, Hurlstone MJ, Hitch GJ (2016) Effects of rhythm on mem-
ory for spoken sequences: A model and tests of its stimulus-driven
mechanism. Cognitive psychology 87:135–178
Henson RN (1998) Short-term memory for serial order: The start-end
model. Cognitive Psychology 36(2):73–137
Henson RN (1999) Positional information in short-term memory: Rel-
ative or absolute? Memory & Cognition 27(5):915–927
Henson RNA (1996) Short-term memory for serial order Unpublished
doctoral dissertation, University of Cambridge
Henson RNA, Norris DG, Page MPA, Baddeley AD (1996) Unchained
memory: Error patterns rule out chaining models of immediate
serial recall. The Quarterly Journal of Experimental Psychology:
Section A 49(1):80–115
Hitch GJ (1974) Short-term memory for spatial and temporal infor-
mation. The Quarterly Journal of Experimental Psychology
26(3):503–513
model of sequence learning and recall. In: Dale R, Mellish C, Zock
M (eds) Current research in natural language generation, London,
Hurlstone MJ, Hitch GJ (2015) How is the serial order of a spatial se-
quence represented? Insights from transposition latencies. Journal
of Experimental Psychology: Learning, Memory, and Cognition
41(2):295–324

