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Abstract Sequential dependencies can provide valuable in-
formation about the processes supporting memory, particular-
ly memory for serial order. Earlier analyses have suggested
that anticipation errors—reporting items ahead of their correct
position in the sequence—tend to be followed by recall of the
displaced item, consistent with primacy gradient models of
serial recall. However, a more recent analysis instead suggests
that anticipation errors are followed by further anticipation
errors, consistent with chaining models. We report analyses of
21 conditions from published serial recall data sets, in which
we observed a systematic pattern whereby anticipations
tended to be followed by the “filling in” of displaced items.
We note that cases where a different pattern held tended to
apply to recall of longer lists under serial learning conditions
or to conditions where participants were free to skip over
items. Although the different patterns that can be observed
might imply a dissociation (e.g., between short- and long-term
memory), we show that these different patterns are naturally
predicted by Farrell’s (Psychological Review 119:223–271,
2012) model of short-term and episodic memory and relate to
whether or not spontaneously formed groups of items can be
skipped over during recall.
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Sequential effects

Although psychologists often assume independence be-
tween responses when analyzing their data, analyses across
different areas of cognitive psychology have revealed that
making a response modifies the probability and timing of
subsequent responses (e.g., Bertelson, 1961; Gilden, 2001;
Remington, 1969; Stewart, Brown, & Chater, 2002). The
study of human memory has revealed a number of examples
of such sequential dependencies. For instance, recalling an
item often reduces the probability of recalling that item
again (Farrell & Lewandowsky, 2012; Henson, 1998a;
Jahnke, 1969; Vousden & Brown, 1998) and can also limit
the probability of recalling other items from memory
(Nilsson, Wright, & Murdock, 1979; Roediger, 1974;
Tulving & Arbuckle, 1966). In recognition memory,
Malmberg and Annis (2012) observed a number of sequen-
tial dependencies (e.g., an “old” response tends to be
followed by another “old” response), and in free recall,
items that are presented close together in time tend to be
recalled together (Howard & Kahana, 1999; Kahana, 1996).

This article is concerned with sequential dependencies in
the recall of sequences from short-term memory and what
they can tell us about the mechanism(s) subserving this
fundamental competency. Empirically, short-term memory
for serial order is examined using the serial recall task, in
which participants are given short sequences of verbal items
(e.g., letters, digits, or words) that they must subsequently
recall in order. Over the past 15 years, this task has
supported considerable theoretical development in our un-
derstanding of how people remember sequences over the
short term (Brown, Preece, & Hulme, 2000; Burgess &
Hitch, 1999; Farrell, 2012; Henson, 1998b; Page & Norris,
1998; see Lewandowsky & Farrell, 2008b, for a review).

Existing theories can be broadly divided into three dif-
ferent classes. Chaining models (Lewandowsky &
Murdock, 1989) hold that items are linked together in a
chain, such that having recalled item n, people can recall
item n + 1 by directly using item n as a cue to that next item.
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Primacy models (Farrell & Lewandowsky, 2002; Page &
Norris, 1998) assume that order is represented in a decreas-
ing gradient of activations across elements in a sequence,
with recall of that sequence being accomplished by repeat-
edly choosing the most active item as the next response and
then suppressing its activation in order to prevent it from
being recalled again. Finally, in positional models (Brown et
al., 2000; Burgess & Hitch, 1999; Farrell, 2012; Henson,
1998b; Lewandowsky & Farrell, 2008b), items are associ-
ated with some exogenous representation of their position in
the sequence (e.g., states of a timing signal; Brown et al.,
2002), such that the item at a particular position can be
retrieved by cuing memory with the positional representa-
tion corresponding to that position.

Much empirical and theoretical work in recent years has
been dedicated to distinguishing between these different theo-
retical accounts of order memory (e.g., Farrell & Lelièvre,
2009; Farrell & Lewandowsky, 2004; Henson, Norris, Page,
& Baddeley, 1996; Oberauer & Lewandowsky, 2008). One
apparent regularity that has been argued to be particularly
informative for distinguishing between these different mecha-
nisms is the form of the sequential dependencies following an
error during recall. Consider the case where a sequence of four
elements—here labeled A, B, C, and D—have been presented
to a person to remember. Of interest is what happens following
the first ordering error; in our case, let us assume that A is
correctly recalled at the first output position but item C is then
erroneously recalled at the second output position. In such a
situation, which item tends to be recalled next, item B or item
D? Chaining models predict that item D will be recalled next;
having recalled item C, the person is assumed to use C as a cue
to the next item in the chain, which is item D. Primacy models
predict the reverse effect; of the two remaining items, B is more
active thanD and will tend to be selected for recall next. Avery
basic version of the positional model will predict no preference
between B andD, since the positional marker associated withC
will serve equally well as a cue for B and D. Nevertheless, the
various positional models incorporate additional assumptions,
such as overwriting in the weight matrix storing associations
(Burgess & Hitch, 1999), a primacy gradient in conjunction
with the positional cues (Burgess & Hitch, 1999; Farrell, 2012;
Henson, 1998b; Lewandowsky & Farrell, 2008b), or response
suppression (Brown et al., 2000; Burgess & Hitch, 1999;
Henson, 1998b; Lewandowsky, 1999), which will bias the
model to preferentially recall item B or D next.

Until recently, analyses of typical serial recall data have
shown a pattern that is qualitatively consistent with primacy
gradient models: The premature erroneous recall of an item
tends to be followed by the displaced item (B in our example
above), thereby “filling in” the empty spot left by the prema-
turely recalled item (C in our example) (Henson, 1996;
Surprenant, Kelley, Farley, & Neath, 2005). The ratio of such
fill-in errors to “infill” errors—where the premature recall of

an item drags along with it the following item (D in the above
example)—tends to be approximately 2:1 (Henson, 1996;
Surprenant et al., 2005). This dependency in serial recall
errors, in conjunction with other error dependencies associat-
ed with the recall of sequences containing repeated items (e.g.,
Henson, 1998a) and sequences mixing rhyming and
nonrhyming items (Farrell & Lewandowsky, 2003; Henson
et al., 1996; Lewandowsky & Farrell, 2008a), constitutes
strong evidence against chaining models of serial recall.

However, a recent article by Solway, Murdock, and
Kahana (2012) reported striking evidence of sequential de-
pendencies more in line with chaining models. Solway et al.
applied two analyses that they used as indices of positional
clustering and temporal clustering, respectively. Positional
clustering (the tendency for recalled items to cluster around
their correct position) was measured by examining the prob-
ability of recall as a function of the distance between an item
and its correct position, commonly called transposition dis-
tance. When measured in aggregate form, this reveals a
peaking around a distance of 0 (i.e., correct recall), with
decreasing probabilities for larger absolute distances (see,
e.g., the top left panel of Fig. 1). Solway et al. showed that a
more diagnostic pattern is revealed by making this analysis
conditional on the first ordering error, which will usually be
an anticipation (i.e., premature recall) of an item in the
sequence. When the transposition distance was computed
only for those responses immediately following the first
order error, Solway et al. found that the function peaked at
negative values, indicating that a further anticipation was
made. This is similar to an infill error in the analyses of
Henson (1996) and Surprenant et al. (2005) and is consistent
with participants navigating a chain of associations.

Solway et al. (2012) also measured temporal clustering
(the tendency for recalled items to cluster around the posi-
tion of the last item recalled), using the lag conditional
response probability (lag-CRP) function, which has been
commonly applied to examine sequential dependencies in
free recall (e.g., Farrell & Lewandowsky, 2008; Howard &
Kahana, 1999; Kahana, 1996; Ward, Tan, & Grenfell-
Essam, 2010). The lag-CRP function records the probability
of recalling an item k as a function of the lag k − j between
that item and the item just recalled, j. As for the positional
analysis, temporal clustering in the aggregate form is mostly
uninformative and shows a pattern similar to that seen in the
top left panel of Fig. 3, whereby the most likely next
response is at lag +1 (i.e., the item that followed the just
recalled item on the input list) and, otherwise, monotonical-
ly declines over the range examined by Solway et al. The
temporal clustering effect is more informative when again
made conditional on the first ordering error having just been
committed during recall. Under such conditions, the lag-
CRP function shows little change in its form in the analyses
of Solway et al., indicating once more that an anticipation
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tends to be followed by a further anticipation, because the
first erroneously recalled item (which is usually an anticipa-
tion) was followed by the next list item (which then also
must be an anticipation). Solway et al. presented a reduced-
form compound chaining model—incorporating remote as
well as contiguous associations between items—and

showed that it was able to account for the sequential depen-
dencies in errors witnessed in their analyses, whereas a
positional model (Burgess & Hitch, 2006) was not.

When one attempts to adjudicate between extant models
of serial recall, the results of Solway et al. (2012) create
renewed and intriguing ambiguity. Whereas the data of
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Fig. 1 Aggregate positional clustering plots. Each panel shows, for a
particular data set, recall probability as a function of displacement (the
difference between the output position at which an item was recalled

and its correct output position). Error bars plot 95 % repeated measures
confidence intervals. Refer to Table 1 for the source of the data
illustrated in each panel
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Henson (1996) and Surprenant et al. (2005) speak against
chaining as a process supporting serially ordered behavior,
the analyses of Solway et al. point to chaining as a key
mechanism. To address these apparent inconsistencies, we
analyzed a number of existing serial recall data sets gathered
for other purposes, using the measures employed by Solway
et al. and Henson (1996). As is detailed next, we found a
consistent pattern of results that run contrary to the pre-
dictions of chaining models.

Analysis of typical serial recall data

We analyzed data from 19 experiments that were previously
examined for different purposes in a recent article (Farrell &
Lewandowsky, 2012). The details of the experiments are
given in Table 1. The experiments all involved serial recall
of letters or digits, and the sequences presented to partici-
pants were of a length typical of tasks in the serial recall
literature (five to seven). The experiments differed in terms
of additional features. Some of the experiments were control
conditions for experiments examining phonological similar-
ity effects (Farrell & Lewandowsky, 2003; Lewandowsky &
Farrell, 2008a). A number of the experiments varied the
timing of the presentation of stimuli within or between

sequences in order to examine phenomena such as purported
temporal isolation effects (Farrell, 2008; Lewandowsky,
B r own , Wr i g h t , & N immo , 2006 ; N immo &
Lewandowsky, 2006), while others varied the nature and
timing of distracting activity following list presentation
(Lewandowsky, Geiger, Morrell, & Oberauer, 2010;
Lewandowsky, Geiger, & Oberauer, 2008). Finally, several
other experiments were run primarily to examine other
aspects of performance, such as response latencies (Farrell
& Lewandowsky, 2004) and sequential dependencies affect-
ing the recency effect (Farrell & Lewandowsky, 2012).

Positional clustering

Figure 1 shows the transposition gradients for each of the 21
conditions. Each panel shows the probability of recalling an
item as a function of the displacement of the item (the
signed difference between its output position and its list
position) for one of the data sets described in Table 1.
Positive values represent postponements (i.e., recalling
items too late), and negative values represent anticipations
(recalling items too early). Following Solway et al. (2012),
these probabilities were corrected for the number of oppor-
tunities to make positional confusions over various dis-
tances (e.g., there are many ways to confuse adjacent

Table 1 Details of experiments

Label Experiment Stimuli Presentation
modality

Response
modality

List
length

a Farrell & Lewandowsky (2003), Experiment 1 Letters Visual Typed 6

b Farrell & Lewandowsky (2003), Experiment 3 Letters Visual Typed 6

c Farrell & Lewandowsky (2004), Experiment 1 Digits Visual Typed 6

d Nimmo & Lewandowsky (2006), Experiment 1 Letters Auditory Typed 7

e Nimmo & Lewandowsky (2006), Experiment 2 Letters Auditory Typed 7

f Nimmo & Lewandowsky (2006), Experiment 2 Letters Visual Typed 7

g Lewandowsky, Brown, Wright, & Nimmo (2006), Experiment 1 (Quiet) Letters Visual Typed 7

h Lewandowsky, Brown, Wright, & Nimmo (2006), Experiment 1 (Suppression) Letters Visual Typed 7

i Lewandowsky, Geiger & Oberauer (2008), Experiment 1 Letters Visual Spoken 5

j Lewandowsky, Geiger & Oberauer (2008), Experiment 2 Letters Visual Spoken 5

k Lewandowsky, Geiger & Oberauer (2008), Experiment 3 Letters Visual Spoken 5

l Lewandowsky, Geiger & Oberauer (2008), Experiment 4 Letters Visual Spoken 5

m Lewandowsky & Farrell (2008), Experiment 2 Letters Visual (Spoken) Typed 6

n Farrell (2008), Experiment 1 Digits Visual Typed 6

o Farrell (2008), Experiment 2 Digits Auditory Typed 6

p Lewandowsky, Geiger, Morrell, & Oberauer (2010), Experiment 1 Letters Visual (Spoken) Spoken 5

q Lewandowsky, Geiger, Morrell, & Oberauer (2010), Experiment 2 Letters Visual (Spoken) Spoken 5

r Lewandowsky, Geiger, Morrell, & Oberauer (2010), Experiment 3 Letters Visual (Spoken) Spoken 5

s Farrell & Lewandowsky (in press), Experiment 1 Letters Visual Typed 7

t Farrell & Lewandowsky (in press), Experiment 2 Letters Visual Typed 6

u Farrell & Lewandowsky (in press), Experiment 3 Letters Visual Typed 7
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items, whereas a confusion over the longest possible dis-
tance can involve only the first and last items on the list);
repetition and extralist intrusion errors were ignored. The
pattern in Fig. 1 is stable and consistent with Solway et al.’s
results in showing a peak at displacement 0 (representing a
large number of correct responses) and a falling off with
increasing displacement.

The more diagnostic analysis examines those same trans-
position gradients immediately following the first order error
(such that, at most, a single response is included from each
sequence); these are plotted in Fig. 2. These show a flatter
profile and cluster around a displacement of 0 or a positive
displacement. This implies a consistent pattern in these data:
An anticipation error (which the first order error will typically
be) tends to be followed by a postponement error.

These results contrast strikingly with those observed by
Solway et al. (2012) in the four data sets they examined,
where displacements following the first order error tended to
peak at negative values. Before attempting to explain the
discrepancy in these results, we first report analyses of
temporal clustering and fill-in/infill errors.

Temporal clustering

The lag-CRP analyses point to a similar discrepancy between
these data sets and those analyzed by Solway et al. (2012).
Lag-CRP was analyzed by calculating the lag (i.e., signed
difference) between successive items in the output sequence,
excluding extralist intrusion, repetition, and omission errors.
As for the positional analyses, these values were corrected for
the opportunity of making lags over various distances.
Figure 3 shows the lag-CRP analysis for all responses, and
the general pattern replicates that seen in Solway et al.’s
analyses: Transitions over larger distances are generally less
likely to be committed, and transitions of +1—following
recall of an item with the item that followed it on the list—
are highly favored. However, analyses of the lag-CRP func-
tions immediately following the first order error (Fig. 4) show
a quite different pattern. In 19 out of 21 cases, the probabilities
for a lag of −1 are numerically greater than for a lag of +1, and
in 13 cases, this difference is statistically significant (see the
figure for details). What this means is that when people have
committed an anticipation, the most likely next response is an
item from earlier in the list—in all likelihood, the item just
skipped over for the anticipation. Our analysis contrasts with
the results of Solway et al., who found that +1 transitions
dominated responses even when the analysis was restricted to
the first order error.

Fill-in versus infill errors

Examination of fill-in:infill ratios (Henson, 1996; Surprenant
et al., 2005) for these data leads to similar conclusions. This

ratio varied from 0.33 to 6.57 across data sets, with a geomet-
ric mean of 1.98. When made conditional on the first order
error, as had been done in previous fill-in analyses (Henson,
1996; Surprenant et al., 2005), a larger range was observed
(min = 1, max = 17) and a larger geometric mean (3.77). These
analyses agree with the positional and temporal-clustering
analyses in showing that the anticipation of an item tends to
be “filled in” by the postponement of an earlier item, rather
than triggering an additional anticipation error.1

Analysis of Grenfell-Essam and Ward (2012)

The results we have reported here show that the general
tendency to infill errors observed in Solway et al.’s (2012)
analyses are not representative of the serial recall task as it is
typically conducted. Rather, corroborating previous analy-
ses (Henson, 1996; Surprenant et al., 2005), we found a
general tendency toward fill-in errors, such that items that
have been displaced by anticipations are reported in the
immediately following output positions. This raises the fol-
lowing question: What is the source of this discrepancy, and
might this be informative?

There are a number of procedural differences between the
experiments analyzed here and those examined by Solway
et al. (2012). Notably, their experiments employed longer
lists (between 10 and 19 items per sequence), and all re-
quired participants to remember words rather than letters or
digits. In addition, their experiments did not require precise
placement of items; rather, the requirement was that any
items that were recalled should be recalled in their relative
order of presentation, such that participants were free to skip
any number of items without penalty. The experiments
examined here, by contrast, all required participants to re-
port items in their precise location and also recorded omis-
sions explicitly if these were allowed. Finally, some of the
experiments examined by Solway et al. were serial learning
experiments in which participants were given repeated pre-
sentations of the same list.

To attempt to pin down at least some of the possible
sources of this discrepancy, we examined the large data set
of Grenfell-Essam and Ward (2012) in a further analysis. In
their Experiment 2, participants were required to recall lists

1 In the review process, it was pointed out that the tendency to fill in
seen in our analyses might be due to participants committing an
anticipatory error prior to the last output position; accordingly, when
at the last output position, the only option involving recall of a new list
item is to commit a postponement error, necessarily producing a fill-in
error. In a subsequent analysis not reported here, the general pattern of
results replicated when the last output position was excluded,
confirming that this factor was not a major contributor to our findings.
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of words in serial order, but words could be skipped over
without penalty (participants were also required to report the
presentation position of items by placing them in a grid; we
ignore this aspect of the task in this analysis and focus
specifically on dependencies in output order). An important
manipulation was list length, which varied from a single
word to 15 words. Figures 5 and 6 show the results of this

analysis, focusing on the pattern following the first order error
for the condition in which list length was known by partici-
pants prior to presentation. The results for longer list lengths
are similar to those obtained by Solway et al. (2012) in their
analysis of the data of Golomb, Peelle, Addis, Kahana, and
Wingfield (2008): The displacement function tends to be
weighted toward negative displacements (Fig. 5), and the
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Fig. 2 Conditional positional clustering plots. Each panel shows, for a particular data set, recall probability as a function of displacement when
responses are conditioned on the first order error. Refer to Table 1 for the source of the data illustrated in each panel
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lag-CRP function shows a clear tendency to produce +1
transitions (Fig. 6). At shorter list lengths, these patterns are
less pronounced but do not show the opposite pattern that was
observed in the other analyses reported here for serial recall of
short lists. Accordingly, list length is an apparent determinant

of the nature of the sequential dependencies observed, al-
though it is clear that other aspects of the tasks—including
the instructions given to participants and the type of stimuli
(letters and digits vs. words)—also play a role in determining
the precise pattern observed.
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Fig. 3 Aggregate temporal-clustering plots. Each panel shows, for a
particular data set, recall probability as a function of the lag (differ-
ence) in input position between successive items in the output se-
quence. An asterisk in the top right of a panel indicates that the

difference between +1 and −1 lags was statistically significant by a
chi-square test. Refer to Table 1 for the source of the data illustrated in
each panel
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When is recall dominated by fill-in versus infill?

On the basis of the analyses presented here, we can entertain
several possible explanations for the different findings from
different experiments and their implications for models of
serial recall.

The first possibility is that the difference primarily re-
flects the distinction between short- and long-term memory.
That is, the mechanism supporting the retention of shorter
lists of letters or digits may be different from that supporting
memory for longer lists of words. This is consistent with
several models of serial recall (Burgess & Hitch, 1999; Page
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Fig. 4 Conditional temporal-clustering plots. Each panel shows, for a
particular data set, recall probability as a function of the lag between
successive responses, when conditioned on the first order error. An

asterisk in the top right of a panel indicates that the difference between
+1 and −1 lags was statistically significant. Refer to Table 1 for the
source of the data illustrated in each panel

Mem Cogn



& Norris, 1998) that were explicitly developed as computa-
tional versions of the phonological loop model (Baddeley,
1986), the classic theory of verbal short-term memory. From
this perspective, the results of Solway et al. (2012) are not
problematic, since they speak to processes that are simply
beyond the purview of such models. Equally, the results
presented here reinforce the conclusion of other authors
about the inadequacy of chaining of items as a mechanism
supporting short-term memory (Baddeley, 1968; Farrell &
Lewandowsky, 2003; Henson, 1996; Henson et al., 1996;
Surprenant et al., 2005), while acknowledging that longer-
term sequence memory may primarily be driven by a mech-
anism such as chaining, as suggested by the results of
Solway et al. However, the results of Grenfell-Essam and
Ward (2012) complicate this picture somewhat, since a
systematic pattern is not observed for shorter lists when
their data are also taken into account.

A second possibility is that the building up of a stable
representation of a sequence over multiple trials—as in two
of the experiments examined by Solway et al. (2012)—in-
volves the transition to a chained representation. Initial
theories of serial learning assumed that such chaining occurs
(e.g., Ebbinghaus, 1885), and chaining-based computational

models have been successfully applied to a wealth of serial
learning data (Lewandowsky & Murdock, 1989). In addition,
evidence from transfer to paired-associate learning (e.g.,
Crowder, 1968) and the spin list technique (e.g., Ebenholtz,
1963; Kahana, Mollison, & Addis, 2010) provide some evi-
dence against positional representations (although see Hitch,
Fastame, & Flude, 2005) and seem to point to the role of
pairwise associations between items in supporting sequence
memory. However, this presents a straightforward explanation
for only two of the experiments examined by Solway and
colleagues, since the other two experiments (Golomb et al.,
2008; Kahana & Caplan, 2002)—along with Grenfell-Essam
and Ward (2012)—involved serial recall of novel sequences.

Rather than positing systemic or functional differences,
we instead seek to explain the data within a single model
architecture. Recently, Farrell (2012) presented a model that
accounts for performance in short-term serial recall and
episodic memory (free recall and serial recall) tasks.
Farrell’s (2012) account of short-term serial recall is akin
to existing computational models (Brown et al., 2000;
Henson, 1998b; Lewandowsky & Farrell, 2008b) in assum-
ing that items are associated to positional markers but that a
primacy gradient in associations is also enforced (for a full
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Fig. 5 Aggregate positional-clustering plots for the data of Grenfell-
Essam and Ward (2012). Each panel shows, for a particular list length,
recall probability following the first order error as a function of

displacement (the difference between the output position at which an
item was recalled and its correct output position). Error bars plot 95 %
repeated measures confidence intervals
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explanation of the model, see Farrell, 2012). Figure 7 shows
that without any modifications, Farrell’s (2012) model does
a good job of accounting for the sequential effects presented
here. This figure analyzes the simulation reported in Fig. 3
of Farrell (2012), which modeled serial recall of short (six-
item) sequences of letters; the only modification is that a
larger number of model replications were used here
(50,000). The top row of Fig. 7 shows that the model pro-
duces the correct pattern of displacements; in the uncondi-
tional analyses (top left panel), responses cluster around
displacement 0, and when the analysis is contingent on the
first order error, the model shifts toward favoring +1 dis-
placements, as can be seen in a number of the experiments
reported here. The lag-CRP analysis (bottom row) is also
consistent with the data: Transitions of lag +1 are most
favored in the unconditional analysis (bottom left panel),
and this flips around to favor transitions of lag −1 in the
conditional analysis (bottom right panel). The fill-in ratio
produced by the simulation is 4.44, a little higher than the
geometric mean from the studies analyzed here, but certain-
ly producing a good approximation. Experimentation with
the model revealed that it produced a lower fill-in ratio and
produced more 0 displacements in the conditional analysis

(top right panel) when the primacy gradient in the model
was flattened.

What about longer-term recall? Solway et al. (2012)
showed that another positional model—namely, that of
Burgess and Hitch (2006)—failed to account for their data.
If recall is driven by positional associations, one might
expect Farrell’s (2012) model to fail on these data in the
same way. Although this might appear to necessarily be the
case at first glance, Farrell (2012) made some additional
assumptions that are important for understanding longer-
term memory. One of these assumptions was that partici-
pants will spontaneously group a sequence into subse-
quences. Such grouping behavior has been suggested to
apply to short-term memory (e.g., Henson, 1996; Madigan,
1980) and is captured by assuming that sequences are rep-
resented at two levels: the position of an item in a group and
the position of that group in the sequence overall (see, e.g.,
Henson, 1998b). Along with the assumption that there is
some variability in the group sizes and that participants
recall the items from a group by first recalling the group
context binding those items together (unless the last group is
recalled immediately, in which case its group context is
carried over from the list), Farrell (2012) showed that the
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Fig. 6 Conditional temporal-clustering plots for the data of Grenfell-
Essam and Ward (2012). Each panel shows, for a particular list length,
recall probability as a function of the lag between successive responses,

when conditioned on the first order error. An asterisk in the top right of
a panel indicates that the difference between +1 and −1 lags was
statistically significant
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model could account for a number of findings from longer-
term recall. An important consequence of this grouping is
that the grouping binds together proximate items in a man-
ner that might look like chaining when analyzed in the
manner employed here; if an item is recalled at a particular
position, that will often be because its group context was
recalled, meaning that the next item in that same group will
tend to be recalled next.

In one of his demonstrations, Farrell (2012) simulated
one of the data sets examined by Solway et al. (2012)—that
of Golomb et al. (2008)—and Fig. 8 shows the analysis of
the simulation results using the measures employed by
Solway et al.; again, the model details and parameter values
are exactly as described in Farrell (2012), with only the
number of replications being increased. The figure shows
that the model produces the appropriate pattern of positional
and temporal clustering. When plotted in aggregate form,
responses cluster around their correct position (top left pan-
el), whereas when contingent on the first order error, re-
sponses tend to cluster at earlier positions following the first
order error (top right panel). The bottom row shows that the
model produces an asymmetry in the lag-CRP favoring +1
transitions, irrespective of whether the analysis is made
conditional on the first order error. The model produces a
fill-in ratio of 0.51, in the ballpark of the fill-in ratio calcu-
lated from Golomb et al.’s data (0.39) and consistent with
Solway et al.’s analyses in suggesting that anticipations are
followed by further anticipations.

Finally, the model also accounts for Grenfell-Essam and
Ward’s (2012) data displaying a tendency to apparent
chaining-like behavior at shorter list lengths. Farrell (2012)
reported a simulation of a similar free recall experiment
conducted by Ward et al. (2010); this simulation was
adapted to the methodology of Grenfell-Essam and Ward
by requiring forward recall (skipping items allowed) and
assuming a probability of recalling only the last group of
.3 (the same value as that used in the simulation of the
Golomb et al., 2008, data). Figure 9, which shows the re-
sults of the simulation of lists of six words (longer lists gave
results similar to those for the Golomb et al., 2008, simula-
tion), makes clear that the model can produce apparent
chaining-like behavior even for short lists.

The simulations of Farrell’s (2012) model show that the
difference in sequential dependencies between the various
analyses presented here and in Solway et al. (2012) do not
imply a shift in representation or the use of different mem-
ory systems. Rather, these differences are attributable to an
interaction between grouping and task constraints. One dif-
ference between simulations producing fill-in versus infill is
that in the short-term serial recall task, all items are stored in
a single group; however, an additional simulation showed
that the model produced similar results if spontaneous
grouping was assumed. The more fundamental difference
is that the tasks modeled in the first simulation all require
that participants produce the entire sequence; in some cases,
omission errors were allowed if people wished to skip a
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Fig. 7 Predictions from
Farrell’s (2012) model for short
sequences of letters. Panels give
predictions for aggregate
positional clustering (top left
panel), positional clustering
when conditioned on the first
order error (top right panel),
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(bottom left panel), and
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particular position, but some report of this skip was explic-
itly required. In the experiments examined by Solway et al.
—including that of Golomb et al. (2008), and the study of

Grenfell-Essam and Ward (2012) analyzed here—partici-
pants could skip items, the only requirement being that the
items that were reported in their relative presentation order.
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Fig. 8 Predictions from
Farrell’s (2012) model for long
sequences of words. Panels give
predictions for aggregate
positional clustering (top left
panel), positional clustering
when conditioned on the first
order error (top right panel),
aggregate temporal clustering
(bottom left panel), and
temporal clustering when
conditioned on the first
ordering error (bottom right
panel)
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Fig. 9 Predictions from
Farrell’s (2012) model for a
shorter list of words. Panels
give predictions for aggregate
positional clustering (top left
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when conditioned on the first
order error (top right panel),
aggregate temporal clustering
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From the perspective of the model, this means that partici-
pants could skip over entire groups. Indeed, to account for
the recency observed in Golomb et al.’s serial recall data,
Farrell (2012) assumed that on each trial, there was a .3
probability that only the last group would be recalled; a
similar assumption was made here in modeling the
Grenfell-Essam and Ward data. Otherwise, the model
attempted recall of the groups in a forward order, but con-
fusions between groups means that the wrong group context
could be retrieved, such that items in those groups would
tend to “travel together” in the output. These can both give
the illusion of item-level chaining in cases of longer lists.

This theoretical analysis accords with Ward et al.’s
(2010) suggestion that variations in performance across
different memory tasks are likely to reflect differences in
task constraints; that is, these patterns can be as much a
reflection of how people use their memory as about the basic
processes of memory itself. In the case of strict serial recall,
participants are required to recall an item at every position,
and so skipping intermediate items is not possible. In the
case of looser methodologies—free recall or forward order
tasks such as that of Golomb et al. (2008)—participants
need not initiate recall with the first item and have an
increasing tendency to initiate recall with the last few list
items as list length increases (Grenfell-Essam & Ward,
2012; Ward et al., 2010). In the case of free recall, this is a
sensible strategy for maximizing accuracy, since the last few
list items are especially accessible immediately following
list presentation (Lewandowsky, Brown, & Thomas, 2009).
When the constraint of forward order is introduced, the
recency advantage trades off against the constraint of only
being able to recall items following those that have been
recalled so far. The nonzero probability of recalling only the
last group in the model captures the idea that participants
may abandon attempting recall of the entire list in favor of
having access to a relatively high-fidelity serially ordered
representation of the last few list items.

Conclusions

We have shown that in short-term serial recall, there is a
consistent tendency for participants to “fill in” gaps in the
sequence left by anticipation errors with earlier items that have
been displaced. This pattern has been observed in other short-
term serial recall data (Henson, 1996; Surprenant et al., 2005),
but it contrasts with recent similar analyses of longer sequences
(Solway et al., 2012). Although this discrepancy may, at first
glance, suggest that memory for different types of information
or sequences of different length rely on different types of
representations (positional and chaining, respectively), we in-
stead have shown that both patterns are consistent with a model
assuming a hierarchical representation of positional

information (Farrell, 2012), the primary factor being whether
participants are allowed to confuse or skip over groups.

Although the data are by themselves constraining, there are
more detailed aspects of the fill-in and infill error data that
have yet to be subjected to rigorous quantitative modeling.
Specifically, Surprenant et al. (2005) examined fill-in ratios at
the level of individual serial positions and noted no strong
tendency for the error ratio to change across output positions.
Surprenant et al. suggested that this finding is problematic for
all serial recall models. It is clear why this is the case for some
models (e.g., primacy gradient models will presumably pre-
dict that the ratio should decrease over output positions, since
the ratio of activations of successive items decreases), but it is
an open question as to whether models combining positional
representations in conjunction with a primacy gradient
(Brown et al., 2000; Farrell, 2012; Farrell & Lewandowsky,
2004; Henson, 1998b; Lewandowsky & Farrell, 2008b) might
account for these more intricate features of the data.

What is clear is that the results of our analyses are problem-
atic for simple chaining models (e.g., Lewandowsky &
Murdock, 1989), which assume pairwise associations between
successive items, as well as complex chaining models—such
as the model presented by Solway et al. (2012; see also
Murdock, 1995)—which incorporate remote, as well as
pairwise, associations between items (although see Dennis,
2009). These models predict that premature recall of an item
will drag a chain of items following that item along with it. In
contrast, the results are consistent with other experiments and
modeling efforts pointing to a fundamental role of positional
representations in supporting sequence memory. A number of
contemporary models of serial recall assume a multilevel rep-
resentation of sequences in order to account for constraining
data patterns from the recall of grouped lists (Brown et al.,
2000; Burgess & Hitch, 1999; Henson, 1998b; Lewandowsky
& Farrell, 2008b), particularly the tendency for confusions of
items between groups to maintain their within-group position
(e.g., Farrell & Lelièvre, 2009; Henson, 1999; Ryan, 1969a,
1969b). The learning of sequences over repeated trials also
points to some hierarchical organization (e.g., Bower, Lesgold,
& Tieman, 1969; Bower & Winzenz, 1969; Hitch, Flude, &
Burgess, 2009; Johnson, 1970; Martin & Noreen, 1974), and
work on sequential task switching implies some positional
representations within chunks (Mayr, 2009). These findings
suggest that positional representations are a ubiquitous feature
of human short- and long-term memory, and—as is demon-
strated here—Farrell’s (2012) model, with its assumption of
hierarchically organized, primacy graded positional markers, is
able to provide a good account of the observed dependencies in
errors across different tasks and time scales.
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