

1 **Does extreme climate event exposure influence climate-related opinions? The**
2 **case of the 2019–2020 Australian Black Summer bushfires**

3 Matthew Andreotta¹, Fabio Boschetti¹, Simon Farrell², Cécile Paris³, Iain Walker⁴, and
4 Mark J. Hurlstone⁵

5 ¹Environment, CSIRO, Australia

6 ²School of Psychological Science, University of Western Australia, Australia

7 ³Data61, CSIRO, Australia

8 ⁴School of Psychological Sciences, University of Melbourne, Australia

9 ⁵Department of Psychology, Lancaster University, UK

10 **Author Note**

11 Matthew Andreotta <https://orcid.org/0000-0002-2996-6031>

12 Fabio Boschetti <https://orcid.org/0000-0001-8999-6913>

13 Simon Farrell <https://orcid.org/0000-0001-7452-8789>

14 Cécile Paris <https://orcid.org/0000-0003-3816-0176>

15 Iain Walker <https://orcid.org/0000-0002-1020-5873>

16 Mark J. Hurlstone <https://orcid.org/0000-0001-9920-6284>

17 Correspondence concerning this article should be addressed to Mark Hurlstone,

18 Department of Psychology, Lancaster University, Lancaster, United Kingdom, LA1 4YW.

19 email: m.hurlstone@lancaster.ac.uk

20 **Data availability statement.** Data for this research are available online at:

21 <https://github.com/matt-lab/bushfire-audience-segmentation>.

22 **Code availability statement.** Analysis scripts are available online, at:

23 <https://github.com/matt-lab/bushfire-audience-segmentation>.

24 **CRedit authorship contribution statement.** **Matthew Andreotta:**

25 Conceptualisation, Data curation, Formal analysis, Investigation, Methodology,

26 Visualisation, Writing—original draft, Writing—review and editing. **Fabio Boschetti**,

27 **Simon Farrell, Cécile Paris, Iain Walker:** Conceptualisation, Methodology,

28 Writing—review and editing, Supervision. **Mark Hurlstone:** Conceptualisation, Formal

29 analysis, Investigation, Methodology, Visualisation, Writing—original draft,

30 Writing—review and editing, Supervision.

31 **Funding.** This research was supported by an Australian Government Research

32 Training Program (RTP) Scholarship from the University of Western Australia and a

33 scholarship from the Commonwealth Scientific and Industrial Research Organisation

34 Research Office awarded to **Matthew Andreotta**.

35 **Competing Interests.** All authors declare no other financial or non-financial

36 competing interests.

37

Abstract

38 We report three studies examining the impact of the 2019-2020 Australian bushfires, known
39 as the Black Summer, on Australians' climate-related opinions. Study 1 was conducted
40 before the peak of the bushfires, whereas Studies 2 and 3 were conducted afterwards. In all
41 studies, respondents completed a Q-sort task ranking opinion statements about climate
42 change by degree of endorsement. Study 3 also incorporated measures of bushfire
43 perceptions and climate policy support. Q-sort responses consistently revealed evidence for
44 three opinion segments: climate-change Acceptors, Fencesitters, and Sceptics. Over time,
45 the proportion of Acceptors decreased, the proportion of Fencesitters increased, while
46 Sceptics remained stable. Perceptions of the bushfires varied across segments. Although all
47 segments perceived the fires as severe, Acceptors tended to attribute them to climate
48 change, whereas Fencesitters and Sceptics attributed them to mass arson. However, even
49 many Acceptors endorsed the mass-arson claim. On climate policy, Acceptors favoured
50 stronger action, Fencesitters were evenly divided, and Sceptics mostly opposed change. Our
51 results suggest the Black Summer bushfires did not elicit greater acceptance of
52 anthropogenic climate change or heightened concern. Instead, misinformation, particularly
53 conservative media narratives attributing the fires to mass arson, may have influenced
54 beliefs about the fires' causes, especially among undecided and sceptical individuals.

55

56 *Keywords:* Black Summer bushfires · climate change · climate opinion · personal
57 experience · extreme events · event attribution · misinformation

58 **Does extreme climate event exposure influence climate-related opinions? The**
59 **case of the 2019–2020 Australian Black Summer bushfires**

60 In October 2019, lightning ignited the largest fire in Australia's recent history (Rural
61 Fire Service, 2020). The 'megafire', so-called for its intensity, size, and difficulty to control,
62 endured for fifteen weeks, burning 512,000 hectares of land, including the Blue Mountains
63 World Heritage Area (Rural Fire Service, 2020). Accompanying the megafire were bushfires
64 in all Australian states and territories throughout the unprecedented 2019-2020 bushfire
65 season (Boer et al., 2020), which became known as the Black Summer. Together, these fires
66 directly killed at least 33 people, burnt over 24 million hectares, destroyed over 3,000
67 homes, killed or displaced nearly three billion animals, and affected nearly 80% of
68 Australians either directly or indirectly (Hughes et al., 2020; The Royal Commission into
69 National Natural Disaster Arrangements, 2020). On a local scale, the fires trapped
70 thousands of Australians without essential goods and services (The Royal Commission into
71 National Natural Disaster Arrangements, 2020). On a national and international scale, the
72 fires transformed the usually festive season into one of grief and vigilance (Head, 2020).

73 Given the extended time scale over which the bushfires raged, the harrowing and
74 sustained media reporting of the devastation caused, and the large proportion of
75 Australians affected by the events, a natural question to ask is whether this Black Summer
76 of crisis altered Australians' climate-related opinions. More generally, the Black Summer
77 presents an opportunity to examine how extreme events of this magnitude may shape
78 public opinions about climate change. In this article, we address this question by
79 presenting three studies comparing Australians' climate-related opinions before and after
80 the peak of the Black Summer bushfires.

81 **Effects of extreme climate events on climate-related opinions**

82 There are several theoretical and empirical reasons for expecting that extreme
83 climate events, such as megafires, may prompt shifts in people's climate-related opinions.
84 First, an often-cited barrier to climate change concern and action is psychological distance

85 (McDonald et al., 2015; Spence et al., 2012; van der Linden et al., 2015; Wang et al., 2019).
86 It is frequently assumed that many people are unconcerned about climate change because
87 they are uncertain about whether it is happening (hypothetical distance) and think that, if
88 it is happening, it will affect other people (social distance), in other places (spatial
89 distance), in the distant future (temporal distance; for critiques of this idea, see
90 van Valkengoed et al., 2023; Wang et al., 2018, 2021). Thus, personal experience of
91 extreme climate events should reduce the psychological distance to climate change,
92 increasing concern about the issue and willingness to act. Second, although belief in
93 anthropogenic climate change is generally high amongst the public, there are indications
94 that the issue is not as salient as other problems (Crawley et al., 2022). Personal
95 experience of extreme climate events may trigger community discussions that place the
96 issue “top-of-mind” in the public’s consciousness (Boudet et al., 2020; Demski et al., 2017),
97 making the problem more salient and increasing support for relevant policies
98 (Bromley-Trujillo & Poe, 2020). Third, personal experience of extreme climate events
99 makes the abstract risks of climate change concrete and may provoke negative affective
100 responses that could increase people’s willingness to mitigate the problem (Bergquist et al.,
101 2019; Marx et al., 2007; E. U. Weber, 2006). Indeed, it is well-established that the
102 experience of negative affect associated with climate change is a key predictor of climate
103 risk perceptions and policy support (Leiserowitz, 2006; van der Linden, 2014, 2015). We
104 refer to these three mechanisms by which extreme event experiences might influence
105 climate-related opinions as the psychological distance, issue salience, and affect activation
106 accounts, respectively (Sisco, 2021).

107 Over the past decade or so, a burgeoning literature has sought to establish whether
108 personal experience of extreme climate events influences climate-related opinions (for
109 reviews, see Howe, 2021; Howe et al., 2019; Reser & Bradley, 2020; Reser et al., 2014;
110 Sambrook et al., 2021; Sisco, 2021). The results of this literature have been somewhat
111 mixed. On the one hand, and consistent with the precedents just reviewed, several studies

112 have shown that self-reported or objectively recorded personal experience of extreme
113 climate events, including drought (Carmichael & Brulle, 2017), flooding (Demski et al.,
114 2017; Ogunbode et al., 2020; Osberghaus & Demski, 2019; Spence et al., 2011; Taylor et al.,
115 2014), heatwaves (Dai et al., 2015), storms (Bergquist et al., 2019; Lang & Ryder, 2016),
116 and, notably, forest fires (Lacroix et al., 2020; Zanocco et al., 2018), increases belief in and
117 concern about climate change. For example, Spence et al. (2011) found that UK households
118 who reported experiencing flooding were more concerned about climate change, perceived
119 it as less uncertain, and felt more confident that their actions would make a difference,
120 compared to households that did not experience flooding. On the other hand, other studies
121 have failed to document an association between climate-related opinion measures and
122 personal experience of climate extremes (Cutler et al., 2020; Shao & Hao, 2020), drought
123 (Carlton et al., 2016), flooding (Albright & Crow, 2019; Whitmarsh, 2008), storms (Lyons
124 et al., 2018), and multiple disasters including a bushfire, cyclone, and drought (Boon,
125 2016). A recent meta-analysis using data from 302 studies found that personal experience
126 of climate events only has a weak positive association with climate change awareness, with
127 effect sizes varying considerably across different climate events (Xia et al., 2022).

128 There are a few known moderators of the effect of personal experience of extreme
129 climate events on climate-related opinions (see e.g., Sambrook et al., 2021; Sisco, 2021)
130 that are especially relevant to the current work. First, personal experience of an extreme
131 event may only influence climate-related opinions when individuals causally attribute that
132 event to climate change (E. U. Weber, 2010). Empirical support for this proposition has
133 been provided in numerous studies (McCright et al., 2014; Ogunbode et al., 2019, 2020;
134 Wong-Parodi & Rubin, 2022). For example, Ogunbode et al. (2019) found that personal
135 experience of flooding only predicted climate risk perceptions for individuals who
136 attributed the flooding to climate change.

137 Second, the effect of personal experience of extreme climate events on
138 climate-related opinions depends on people's pre-existing climate change beliefs, a pattern

139 consistent with motivated reasoning—the tendency for individuals to interpret information
140 in ways that protect or reinforce their prior beliefs (Druckman & McGrath, 2019; Kunda,
141 1990). Exposure to extreme climate events tends to increase climate risk perceptions
142 primarily among people who already accept climate change, whereas those who are more
143 sceptical show little or no change (Lacroix et al., 2020). A complementary line of research
144 uses political ideology as a proxy for these pre-existing climate change beliefs, based on the
145 well-established association between liberalism and acceptance of climate science and
146 conservatism and climate scepticism (Hornsey et al., 2016). This work shows that liberals
147 are more likely than conservatives to perceive or interpret extreme events in ways
148 consistent with climate change (Lyons et al., 2018; Zanocco et al., 2018). Other work
149 demonstrates that whether people attribute extreme events to climate change is itself
150 shaped by their prior beliefs and political ideology (Ogunbode et al., 2019, 2020).

151 Third, media attention to an extreme event may also be necessary for it to shape
152 climate-related opinions. Extreme climate events can serve as “focusing events” (Birkland,
153 1998; Birkland & Schwaeble, 2019)—sudden, uncommon, and attention-grabbing
154 occurrences that attract increased media coverage (Kirilenko et al., 2015; Marquart-Pyatt
155 et al., 2014; Sisco et al., 2017) and create opportunities to highlight the links between such
156 events and ongoing climate change. Media attention to climate change has been shown to
157 influence climate attitudes (Carmichael et al., 2017) and increase public conversations
158 about the issue (King et al., 2017). However, the effect of media attention may depend on
159 its frequency and prominence, whether the event is causally attributed to climate change,
160 and on the presence of competing narratives or misinformation that undermine the
161 connection between climate change and the extreme event.

162 **Divergent mass media and social media bushfire narratives**

163 Because media coverage can shape causal attributions and amplify motivated
164 reasoning, understanding how the bushfires were portrayed in the media is necessary for
165 interpreting how Australians made sense of the Black Summer. Mocatta and Hawley

166 (2020) charted the content and evolution of media coverage of the Black Summer, which
167 focused predominantly on the causes of the fires and what or who was to blame. Scientists
168 had been quick to confirm that the scale and severity of the fires were unprecedented
169 (Shine, 2020) and had been worsened by climate change (Climate Council, 2019; Gourlay
170 et al., 2020). Accordingly, much mass media coverage initially attributed the cause of the
171 fires to climate change and presented apocalyptic images and descriptions of the
172 devastation caused. However, as the fires intensified, mass-media reporting of their causes
173 quickly diverged along ideological lines. Public broadcasters and liberal media outlets
174 continued to emphasise the connection between climate change and the bushfires, whereas
175 conservative media outlets sought to downplay the severity of the fires and cast doubt on
176 the link with climate change. A key argumentation strategy in the conservative media at
177 this time was the claim that the fires were “nothing new” and in keeping with historic
178 bushfires in terms of their severity (Johnstone, 2019). Additionally, some conservative
179 media argued that the Black Summer was worsened by “Greens policies” that prevented
180 firefighters from reducing fuel loads (G. Brown & Caisley, 2019), despite the Greens’
181 platform’s overt support for hazard reduction (Australian Greens, 2020).

182 Coinciding with the emergence of these narratives in the conservative mass media,
183 misinformation began to ferment on the social media platform formally known as Twitter
184 (now X) in Australia and internationally. Under the hashtag #ArsonEmergency, false
185 claims began to circulate that the bushfires were caused by arson, that preventative
186 backburning efforts had been reduced due to green activism, that Australia commonly
187 experienced such bushfires, and that climate change is unrelated to the bushfires (D. Weber
188 et al., 2020, 2022). Social media researchers agree that the activities were likely a
189 deliberate disinformation campaign (Keller et al., 2020; D. Weber et al., 2020).

190 Online misinformation spread under the #ArsonEmergency hashtag, notably the
191 claim that arsonists were a major cause of the fires, subsequently infected conservative
192 mass-media reporting of the bushfires. A prominent example was an article published in

193 The Australian under the title “Bushfires: firebugs fuelling crisis as national arson toll hits
194 183” claiming that “more than 180 alleged arson cases have been recorded since the start of
195 the bushfire season” (Ross & Reid, 2020). The article played a prominent role in fuelling
196 online climate change denial narratives and was shared by prominent conservatives, such as
197 Donald Trump Jr., to his audience of four million followers on Twitter, thus propelling the
198 misinformation to a much larger online audience. The arson claims were grossly
199 exaggerated (NSW Bushfire Inquiry, 2020), calculated based on a range of fire-related
200 offences other than arson, and relied on annual figures rather than the Black Summer
201 bushfire season (Council, 2021).

202 In summary, media coverage of the Black Summer bushfires focused predominantly
203 on the causes of the fires and was characterised by a power struggle between two competing
204 narratives. One narrative emphasised a relationship between climate change and bushfires,
205 supported by scientists’ assessments of the bushfires (Boer et al., 2020; van Oldenborgh
206 et al., 2021). The other narrative, fuelled by misinformation, refuted the connection
207 between climate change and the bushfires, notably by making exaggerated claims about
208 arson. This polarised and divisive mass media and social media landscape could have
209 persuaded those undecided about climate change to become more accepting or sceptical
210 about the issue. Thus, whether the Black Summer bushfires and accompanying media
211 narratives altered the climate-related opinions of those undecided about climate change is
212 an open empirical question.

213 **Current research**

214 In the following, we report the results of three audience segmentation studies of
215 Australian climate-related opinions. The studies were undertaken to identify distinct
216 sub-groups of the Australian population that hold different views about climate change.
217 All three studies employed the Q methodology (S. R. Brown, 1982; Stephenson, 1986), in
218 which participants completed a Q-sort task by rank-ordering a series of opinion statements
219 about climate change, derived from a large-scale analysis of Australian Twitter climate

220 commentary (Andreotta et al., 2019, 2022), according to how similar each was to their
221 point of view. Participants' rank-orderings of the statements were then subjected to
222 Q-factor analysis to identify distinct audience segments of climate-related opinions.

223 In Study 1 (September 2019), which took place before the peak of the Black
224 Summer bushfires, participants completed the Q-sort task along with a battery of measures
225 of prominent psychological characteristics to help facilitate interpretation of the different
226 audience segments. We found evidence for a three-segment solution comprising Acceptors,
227 Fencesitters, and Sceptics, ordered from the highest to the lowest belief in anthropogenic
228 climate change, trust in climate science, concern about the issue, and motivation to tackle
229 it. Segments also differed in their climate change concern and scepticism, mental models of
230 climate change, political ideology, and worldviews, as assessed using the auxiliary
231 psychological characteristic measures.

232 In Study 2 (February 2020), which took place after the peak of the bushfires,
233 participants completed the Q-sort task followed by a series of belief-updating tasks to
234 determine whether segments differed in their receptivity to climate science information. We
235 replicated the three-segment solution of Study 1 and found considerable heterogeneity in
236 the belief-updating tendencies of the three segments. Acceptors updated their beliefs the
237 most towards the scientific estimates, closely followed by Fencesitters, whereas Sceptics did
238 not update their beliefs at all.

239 These two studies were part of a planned program of research that predated the
240 bushfires but coincided with their occurrence, affording us a natural experiment, so to
241 speak, to determine whether the bushfires catalysed a change in Australian climate-related
242 opinions. The results of these two studies have been reported elsewhere (Andreotta et al.,
243 2022), but have not yet been systematically compared to determine whether the occurrence
244 of the bushfires influenced Australian climate-related opinions. In the current paper, we
245 undertake this comparison and report the results of a third study conducted one month
246 after our second study, near the end of the Black Summer. In Study 3 (March 2020),

247 participants completed the Q-sort task and the same battery of psychological characteristic
248 measures used in Study 1. Additionally, participants completed a measure of bushfire
249 perceptions assessing their endorsement of various media and political claims about the
250 bushfires—for example, that climate change worsened them, that the fires were severe, and
251 that arsonists contributed to their occurrence—and a measure of the degree to which the
252 bushfires warranted a change in Australia’s climate policy.

253 Whereas our earlier research focused on identifying the number, nature, and
254 psychological characteristics of Australia’s climate change audience segments (Andreotta
255 et al., 2022), the present work leverages a longitudinal cross-sectional design to examine
256 whether climate-related opinions shifted across different stages of the Black Summer
257 bushfires. Using data from all three studies, we first confirmed that the three-segment
258 solution and the pattern of psychological characteristic differences between segments
259 reported by Andreotta et al. (2022) generalised to Study 3. Next, we explored whether
260 climate-related opinions varied in response to the Black Summer bushfires, by testing for
261 between-study differences in the proportion of respondents assigned to each segment
262 (Studies 1, 2, & 3) and in climate change cognition and affect (Study 1 vs. Study 3).
263 Finally, to better understand any observed shifts or stability in climate-related opinions, we
264 analysed segment-specific perceptions and preferred policy responses to the Black Summer
265 bushfires (Study 3). Of particular interest was the degree to which respondents causally
266 attributed the bushfires to climate change versus alternative explanations based on the
267 erroneous causal claim that the fires were deliberately ignited by arsonists, and whether
268 these patterns of causal attribution could be understood in terms of motivated reasoning.

269 From an empirical standpoint, the mixed evidence on how extreme climate events
270 influence climate-related opinions makes it difficult to specify directional hypotheses.
271 However, from a theoretical standpoint, the psychological distance, issue salience, and
272 affect activation accounts introduced at the outset predict that—to the extent that people
273 interpreted the bushfires as having been worsened by climate change—personal experience

274 of the bushfires should make climate change feel more psychologically proximal, heighten
275 the salience of the issue, and elicit affective responses (e.g., worry) that increase perceived
276 climate risk. Accordingly, a strong prediction is that the proportion of Fencesitters would
277 decrease and the proportion of Acceptors would increase across studies. A weaker
278 prediction is that, even if segment composition remains stable, scores on the continuous
279 measures of climate change cognition and affect would change in a manner that reflects
280 greater acceptance of, and concern about, the issue (e.g., increased worry and reduced
281 scepticism).

282 These effects, however, depend on Australians' perceptions of the causes of the
283 bushfires. If misinformation narratives gained traction, then individuals may have
284 attributed the fires to arson rather than to climate change, in which case the psychological
285 mechanisms identified above would not have been activated. Instead, such narratives could
286 offset or even reverse the predicted pattern, leading not only to an increase in the
287 proportion of Fencesitters at the expense of Acceptors, but also to declining concern and
288 greater scepticism on the continuous climate change cognition and affect measures. On this
289 misinformation account, climate-related opinions might remain unchanged overall or
290 instead shift towards greater scepticism.

291 Method

292 Data and analysis scripts for this research are available online at
293 <https://github.com/matt-lab/bushfire-audience-segmentation>. This research was approved
294 by the Human Research Ethics Committees of the University of Western Australia
295 (reference: 2019/RA/4/20/5104) and the Commonwealth Scientific and Industrial
296 Research Organisation (reference: 026/19).

297 Participants

298 Table 3 provides an overview of the key characteristics of the study samples and the
299 materials they completed. Data were collected at three time periods. Study 1 was
300 conducted in September ($n = 387$, 88.97% of Study 1 participants), October ($n = 42$,

301 9.66% of Study 1 participants), and November ($n = 6$, 1.38% of Study 1 participants) of
302 2019, prior to the peak of the Black Summer bushfires. Study 2 was conducted in February
303 ($n = 403$, 97.58% of Study 2 participants) and March ($n = 10$, 2.42% of Study 2
304 participants) of 2020, after the peak of the bushfires. Study 3 was conducted in March
305 2020 ($n = 213$), approaching the end of the Black Summer bushfires.

306 In total, 1,061 Australian adults participated in the studies. Participants were
307 recruited using Qualtrics' (Provo, UT) online research panel service using a targeted and
308 stratified sampling approach to match the age and gender distribution of the general
309 population (as per the national 2016 census). The age and gender distributions were
310 comparable across samples, as indicated by regression models (see Supplementary
311 Methods). These models do not identify statistically significant differences between the
312 mean age of participants across studies or the (log odds) ratio of female to male
313 participants across studies. We excluded extremely fast responders who were identified
314 using a preregistered threshold (see Supplementary Methods).

315 **Materials**

316 ***Q-sort task***

317 To segment participants into climate change audiences, we used the Q-sort task
318 (S. R. Brown, 1982; Stephenson, 1986). This task requires a set of opinion statements
319 capturing the breadth of conversational possibilities around an issue, elicited through a
320 bottom-up process. To create our statements, we drew upon previous work that used an
321 inductive process to identify the structure of climate change commentary of Australian
322 tweets (Andreotta et al., 2019). This research revealed five enduring themes of public
323 discourse on climate change: climate change action, climate change consequences, climate
324 change conversations, climate change denial, and the legitimacy of climate science and
325 climate change. For each theme, we selected six tweets that captured the heterogeneity of
326 the theme (see Andreotta et al., 2022). The resulting 30 tweets were transcribed as
327 statements that could be understood without the social context of the original tweet.

328 Where possible, language, sentiment, and tone were preserved. Statements included: “It is
329 important to vote for leaders who will combat climate change” (climate change action),
330 “Climate change is a threat to the health and safety of our children” (climate change
331 consequences), “It is shameful that climate change, the greatest problem of our time, is
332 barely discussed in the media” (climate change conversations), “Climate change sceptics
333 ignore basic climate science facts” (climate change denial), and “Scientists should stop
334 falsely claiming that climate change is a settled science” (legitimacy of climate science and
335 climate change).

336 The Q-sort task was divided into three parts. In part 1, to encourage reflection,
337 participants began by reading each statement and determining if it was: (1) like their point
338 of view; (2) unlike their point of view; or (3) neutral or unsure. In part 2, participants
339 ranked each statement according to how closely it matched their point of view, assigning a
340 rank from -4 (most unlike their point of view) to +4 (most like their point of view). The
341 distribution of possible ranks was forced and non-uniform, such that participants had to
342 consider the few statements to place at the extremes (see Figure 1). This encourages
343 participants to carefully reflect on their views while completing the task (S. R. Brown,
344 1982; Stephenson, 1986). Finally, in part 3, participants were asked to justify their
345 placement of statements assigned extreme ranks.

346 ***Auxiliary psychological scales***

347 A battery of 28 auxiliary psychological characteristic measures was assembled (Table
348 1). Among these, the most relevant to the current research were state-based psychological
349 scales of climate change cognition and affect. Specifically, we measured general belief in
350 anthropogenic climate change, with scales concerning epistemic scepticism (doubt about
351 anthropogenic climate change), response scepticism (doubt about the effectiveness of
352 climate change mitigation), perceived human contribution (belief that humans have altered
353 the global climate), knowledge volume (self-perceived confidence in climate change
354 knowledge), and worry about climate change. Additionally, we included higher-resolution

355 inventories to quantify participants' mental models of specific climate change causes,
356 climate change consequences, and the effectiveness of climate change mitigation policies.

357 Other psychological scales pertained to trait-based concepts found to be associated
358 with climate change beliefs. This includes inventories of: cognitive styles; ideology,
359 worldviews, and values; and personality.

360 ***Fire Perception Scale***

361 To measure perceptions of the Black Summer bushfires, we developed the Fire
362 Perception Scale. Drawing on our collective observations of the media and political
363 discourses surrounding the fires, we identified three prominent themes: climate change
364 attribution (the extent to which the bushfires were perceived as attributable to climate
365 change), perceived severity (the perceived magnitude or seriousness of the bushfires), and
366 human responsibility and preventability (beliefs about whether societal or policy changes
367 could reduce future fire risk, or whether other human factors such as arson were to blame).

368 We created seven declarative statements reflecting these themes. Example items include
369 “Climate change made the 2019-20 Australian bushfires more severe” (climate change
370 attribution), “The 2019-20 Australian bushfires are severe” (perceived severity), and “Over
371 one hundred arsonists have contributed to the 2019-20 Australian bushfires” (human
372 responsibility and preventability). Participants rated their agreement with each statement
373 on a five-point Likert scale: (1) disagree, (2) slightly disagree, (3) neither agree nor
374 disagree, (4) slightly agree, and (5) agree.

375 ***Policy direction preferences***

376 To measure participants' views on the policy consequences of the Black Summer
377 bushfires, they responded to two items. First, participants were asked: “Do the 2019-20
378 Australian bushfires justify a change in Australia's climate change policy?”. Participants
379 could respond with one of four options: (1) “Yes, the Australian government should be
380 taking further action to mitigate climate change”; (2) “No, the Australian government
381 should not modify the current climate change policy”; (3) “Yes, the Australian government

382 should be taking less action to mitigate climate change”; and (4) “Yes, the Australian
383 government should be taking no action at all to mitigate climate change”. Next,
384 participants were asked to justify their response (“Why?”) through writing an open-ended
385 response.

386 **Procedure**

387 All studies were conducted as online surveys using Qualtrics (Provo, UT). To begin,
388 participants read an information sheet, provided informed consent, and supplied basic
389 demographic information. The procedure subsequently varied across studies (summarised
390 in Table 3). In Study 1, participants completed the Q-sort task followed by the auxiliary
391 psychological scales. In Study 2, participants completed the Q-sort task followed by a
392 belief-updating task unrelated to the current research. In Study 3, participants completed
393 all materials: the Q-sort task, auxiliary psychological scales, the Fire Perception Scale, and
394 policy direction preference items. To control for potential order effects, the presentation
395 sequence of materials was counterbalanced across participants (see Supplementary
396 Methods).

397 **Sample size justification**

398 Sample sizes and the statistical power of our analyses were determined by practical
399 constraints (Lakens, 2022). Studies 1 ($n = 435$) and 2 ($n = 413$) were undertaken prior to
400 the current research, with their sample sizes being chosen based on their original objectives
401 (Andreotta et al., 2022). Study 3 ($n = 213$) was made possible by remaining grant funds
402 from the earlier studies. Although smaller than the first two studies, this sample
403 represented the maximum feasible sample size given the available budget and the need for
404 rapid data collection following the bushfires. To determine the power of tests to detect
405 study differences in climate change audience segments, cognition, and affect, we conducted
406 a sensitivity power analysis with the G*Power program (Faul et al., 2007, 2009). We found
407 our analyses had sufficient power ($\geq .80$) to detect the expected small effects of study
408 differences in audience segment membership (for effect sizes of Cohen’s $\omega \geq 0.106$ for a

409 likelihood-ratio χ^2 test) and climate change cognition and affect measures (for effect sizes
410 of Cohen's $d \geq 0.235$ for t tests of mean differences).

411 Results

412 The results are structured into four sections. First, we assess whether the
413 three-segment solution and the pattern of psychological characteristic differences between
414 segments documented in our original analysis of Studies 1 and 2 (Andreotta et al., 2022)
415 generalise to Study 3. Second, we examine whether the proportion of respondents in each
416 segment (Studies 1, 2, & 3) and their responses on the climate change cognition and affect
417 measures (Studies 1 & 3) changed over time. Third, we investigate segment differences in
418 bushfire perceptions (Study 3), and fourth, we analyse segment differences in policy
419 preferences (Study 3). All analyses were completed with the *R* programming language (R
420 Core Team, 2023).

421 Replication of the three-segment solution

422 As per our previous research, we used the Q methodology to identify distinct views
423 on climate change (S. R. Brown, 1982). The Q methodology transposes traditional
424 dimension reduction techniques to reduce the dimensions of *people* rather than *items*. For
425 each study, we used principal components analysis with varimax rotation to group
426 individuals with similar Q-sort ranks. We extracted a single factor, as the second
427 component accounted for only a minor amount of variance in each study. The extracted
428 factor represented a dimension of anthropogenic climate-change acceptance. Based on
429 factor loadings, we divided individuals into one of three segments: (1) *Acceptors* ($n = 653$,
430 61.55%), whose positive factor loading was statistically significant from zero ($p < .05$); (2)
431 *Sceptics* ($n = 97$, 9.14%), whose negative factor loading was statistically significant from
432 zero ($p < .05$); and (3) *Fencesitters* ($n = 311$, 29.31%), whose factor loading was not
433 statistically significant from zero ($p \geq .05$).

434 Although the number of segments was consistent across studies, the nature of the
435 segments may vary. To explore this possibility, we constructed an average Q sort for

436 Acceptors and Sceptics in each study (S. R. Brown, 1982). The ranks assigned to each
437 statement were averaged (weighted by participants' factor loading). These averages were
438 then ranked to align with the Q-sort structure, generating a set of values known as factor
439 scores. For example, the statement with the lowest average corresponded to a factor score
440 of -4 and the statement with the highest average corresponded to a factor score of +4 (see
441 Supplementary Results for all factor scores). We did not build a representative Q sort for
442 Fencesitters as the sorting behaviour of this segment is more heterogenous than the other
443 two segments (otherwise Fencesitters would have emerged as a separate factor). In all three
444 studies, the greatest factor score for Acceptors corresponded to the statement "It is
445 important to vote for leaders who will combat climate change", whereas the greatest factor
446 score for Sceptics corresponded to the statement "Scientists should stop falsely claiming
447 that climate change is a settled science."

448 We found minimal differences in each segment's factor scores across studies.

449 Acceptor factor ranks from the three studies were strongly correlated (all Spearman's ρ
450 correlations $> .95$, all p 's $< .001$). Likewise, Sceptic factor ranks across studies were
451 strongly correlated (all Spearman's ρ correlations $> .94$, all p 's $< .001$). Consistently across
452 studies, Acceptors and Sceptics held divergent views (all Spearman's ρ correlations $< -.81$,
453 all p 's $< .001$). In sum, the number and nature of segments' climate change views were
454 consistent across time.

455 We also explored whether segments were distinguished by a consistent pattern of
456 psychological characteristics by replicating the regression analysis of Andreotta et al.
457 (2022). This analysis was complicated by multicollinearity, which can lead to unstable
458 coefficient estimates in traditional regression approaches. Instead, we sought to produce
459 stable estimates with a ridge regression model. A ridge regression reduces the variance of
460 estimates caused by multicollinearity by shrinking the coefficients towards zero (a
461 bias-variance tradeoff; James et al., 2021). With the *glmnet* package (Friedman et al.,
462 2010), we fitted a multinomial logistic ridge regression model to predict segment

463 membership as a function of psychological characteristics for Study 1 and Study 3. The
464 degree of shrinkage, controlled by a hyperparameter λ , was chosen by a cross-validation
465 process (k -fold) that minimised multinomial deviance. Prior to analysis, we converted
466 responses to z scores for each predictor in each study. Confidence intervals were estimated
467 by repeating the modelling procedure via bootstrapping with 10,000 samples (sampled
468 with replacement; Efron & Tibshirani, 1994).

469 The ridge regression model demonstrated good fit for both Study 1 (83.22%
470 accuracy, accounting for 49.07% of null deviance) and Study 3 (88.26% accuracy,
471 accounting for 66.39% of null deviance). As seen in Table 2, the models' coefficients were
472 generally consistent (same sign) across studies, indicating a robust association between
473 psychological characteristics and segment membership. Regarding climate change cognition
474 and affect, Acceptors and Sceptics were distinguished by opposing patterns of climate
475 change scepticism and belief in anthropogenic climate change. In contrast, the Fencesitters
476 of Study 3 were characterised by response scepticism and perceptions that carbon-emitting
477 activities cause climate change. Turning to cognitive styles, conspiracist ideation was
478 positively associated with Fencesitter membership, and negatively associated with Acceptor
479 membership (both studies), whereas Sceptics were characterised by a reduced orientation
480 towards future consequences (Study 3). Generally, Acceptors and Sceptics were
481 distinguished by opposing patterns of ideologies, worldviews, and values. Lastly,
482 personality tended not to be a robust predictor of segment membership, although evidence
483 from Study 3 indicated that Fencesitters were characterised by greater extraversion and
484 conscientiousness, whereas Sceptics were characterised by greater introversion.

485 **Change in climate change segment membership, cognition, and affect**

486 To explore whether climate change views changed during the Black Summer
487 bushfires, we investigated the relative proportions of segments across studies (Figure 2).
488 Numerically, the proportion of Acceptors fell across time (from 64.60% of the Study 1
489 sample to 54.46% of the Study 3 sample), whereas the proportion of Fencesitters increased

490 across time (from 27.13% of the Study 1 sample to 37.09% of the Study 3 sample). In
491 comparison, the proportion of Sceptics was relatively stable across studies (from 8.28% of
492 the Study 1 sample to 8.45% of the Study 3 sample). To investigate whether the relative
493 proportion of segments differed across studies, we created a multinomial logistic regression
494 model to predict segment membership as a function of study (coefficients reported in
495 Supplementary Results), using the *multinom* function from the *nnet* package (Venables &
496 Ripley, 2002). A likelihood-ratio test did not indicate a statistically reliable improvement
497 in model fit when study was included as a predictor, compared to a model with only an
498 intercept term ($\chi^2 (4) = 8.85, p = .07$, Cohen's $\omega = 0.09$). Although the effect approached
499 significance, segment membership did not reliably differ across study samples.

500 In addition to segment membership, we tested for differences in climate change
501 cognition and affect between Study 1 (September 2019) and Study 3 (March 2020) using *t*
502 tests. To guard against Type I errors, we applied a Holm (1979) *p* value adjustment (Table
503 4). Participants in Study 3 reported a significantly higher endorsement of natural cycle
504 causes of climate change (e.g., volcanic eruptions, solar fluctuations) than those in Study 1
505 (Cohen's $d = 0.25$). However, no other climate change cognition and affect characteristics
506 reliably differed between Study 1 and Study 3. Furthermore, there was no evidence that
507 participants from Study 1 and Study 3 reliably differed in their dispositional attributes of:
508 cognitive styles; ideology, worldviews and values; or personality (all $p > .05$; see
509 Supplementary Results for *t* tests).

510 **Bushfire perceptions**

511 To explore perceptions of the Black Summer bushfires, we performed a principal
512 components analysis with varimax rotation on the Fire Perception Scale (see Table 5). We
513 extracted three factors, as these accounted for the majority of scale variance (78.31%; see
514 Supplementary Results for scree plot). The first factor, labelled *Climate Processes*, was
515 characterised by four items (items 1, 3, 5, 6) that linked climate change to the bushfires
516 and accounted for 41.22% of scale variance. The second factor, labelled *Fire Appraisal*, was

517 characterised by two items (items 2 and 4), with the two most extreme (maximum and
518 minimum) mean item scores and accounted for 19.97% of scale variance. The third factor,
519 labelled *Arson Causes*, was characterised by a single item (item 7) stating that the Black
520 Summer was caused by hundreds of arsonists and accounted for 17.12% of scale variance.
521 We created subscales corresponding to each factor by averaging item scores. Items that
522 negatively loaded onto factors were reverse-coded. The multi-item factors of Climate
523 Processes and Fire Appraisal had an internal consistency of Cronbach's $\alpha = .86$ (four
524 items; mean inter-item $r = .60$) and Cronbach's $\alpha = .42$ (inter-item $r = .29$), respectively.
525 Given the low internal consistency of Fire Appraisal, we analysed its two component items
526 separately. For brevity, we refer to these items using abbreviated labels—"Climate change
527 made bushfires less likely" (item 2) and "Bushfires were severe" (item 4)—in the following
528 analysis.

529 To test segment differences in bushfire perceptions, we fitted linear regression
530 models predicting Climate Processes, the two Fire Appraisal items, and Arson Causes from
531 segment membership (coefficients reported in Supplementary Results). All models
532 accounted for a significant amount of bushfire perception variance compared to
533 intercept-only models, indicating that segment membership was a significant predictor of
534 Climate Processes ($F(2, 210) = 47.44, p < .001, R^2 = 0.31, R^2_{adjusted} = 0.30$), the two Fire
535 Appraisal items ("Climate change made bushfires less likely": $F(2, 210) = 18.30, p < .001,$
536 $R^2 = 0.15, R^2_{adjusted} = 0.14$; "Bushfires were severe": $F(2, 210) = 19.71, p < .001, R^2 =$
537 $0.16, R^2_{adjusted} = 0.15$), and Arson Causes ($F(2, 210) = 12.69, p < .001, R^2 = 0.11, R^2_{adjusted}$
538 $= 0.10$).

539 To quantify specific segment differences, we conducted pairwise comparisons of
540 marginal means using the *marginaleffects* package (Arel-Bundock et al., n.d.), with a Holm
541 (1979) p value adjustment for multiple comparisons. As seen in Figure 3, Acceptors
542 reported higher endorsement of Climate Processes than Fencesitters (difference = 0.53, SE
543 = 0.14, 95% CI = [0.26, 0.80], $z = 3.87, p < .001, p_{adjusted} < .001$), who in turn endorsed

544 Climate Processes more than Sceptics (difference = 1.76, $SE = 0.25$, 95% CI = [1.28, 2.24],
545 $z = 7.14$, $p < .001$, $p_{adjusted} < .001$). For the first Fire Appraisal item (“Climate change
546 made bushfires less likely”), Fencesitters showed higher endorsement than both Acceptors
547 (difference = 1.04, $SE = 0.17$, 95% CI = [0.70, 1.38], $z = 6.05$, $p < .001$, $p_{adjusted} < .001$)
548 and Sceptics (difference = 0.64, $SE = 0.31$, 95% CI = [0.04, 1.25], $z = 2.08$, $p = .037$,
549 $p_{adjusted} = .074$). Acceptors and Sceptics did not significantly differ (difference = -0.40, SE
550 = 0.30, 95% CI = [-0.99, 0.19], $z = -1.33$, $p = .182$, $p_{adjusted} = .182$). For the second Fire
551 Appraisal item (“Bushfires were severe”), Acceptors reported greater endorsement than
552 both Fencesitters (difference = 0.65, $SE = 0.11$, 95% CI = [0.44, 0.85], $z = 6.05$, $p < .001$,
553 $p_{adjusted} < .001$) and Sceptics (difference = 0.56, $SE = 0.19$, 95% CI = [0.20, 0.93], $z =$
554 3.04, $p = .002$, $p_{adjusted} = .005$), whereas Fencesitters and Sceptics did not significantly
555 differ (difference = -0.08, $SE = 0.19$, 95% CI = [-0.46, 0.29], $z = -0.43$, $p = .664$, $p_{adjusted} =$
556 .664). Finally, for Arson Causes, the pattern of Climate Processes endorsement was
557 reversed. Specifically, Sceptics showed higher endorsement than Fencesitters (difference =
558 0.74, $SE = 0.30$, 95% CI = [0.15, 1.32], $z = 2.47$, $p = .014$, $p_{adjusted} = .014$), who in turn
559 showed higher endorsement than Acceptors (difference = 0.55, $SE = 0.17$, 95% CI = [0.23,
560 0.88], $z = 3.32$, $p < .001$, $p_{adjusted} = .002$).

561 We investigated causal perceptions by examining responses to claims that mass
562 arson (item 7 of the Fire Perception Scale) and climate change (item 1 of the Fire
563 Perception Scale) contributed to the Black Summer bushfires. The results reveal a striking
564 pattern of misinformation endorsement. Despite segment differences, participants seldom
565 rejected the claim that over one hundred arsonists contributed to the Black Summer
566 bushfires ($n = 38$; 17.84% responded with ‘disagree’ or ‘strongly disagree’ to item 7). In
567 fact, a majority of Fencesitters (56.96%) and Sceptics (88.89%) endorsed the mass-arson
568 explanation, compared with 38.79% of Acceptors. This widespread endorsement of an
569 unsupported causal claim underscores how misinformation narratives surrounding the fires
570 gained substantial traction—particularly amongst those who are uncertain or sceptical

571 about the scientific consensus on climate change.

572 In contrast, endorsement of the climate-change causal claim showed the opposite
573 pattern. A majority of Acceptors ($n = 101$; 87.07%) agreed that climate change worsened
574 the severity of the bushfires, whereas agreement was much lower among Fencesitters
575 (41.77%) and entirely absent among Sceptics. Overall, endorsement of the mass-arson
576 causal claim was negatively associated with endorsement of the climate-change causal
577 claim ($r = -.21$, 95% CI = $[-.33, -.08]$, $p = .002$), consistent with the notion that belief in
578 misinformation displaced acceptance of scientifically grounded explanations.

579 To test a motivated-reasoning account of perceptions of the bushfires, we examined
580 the association between political liberalism-conservatism (as indexed by the single-item
581 measure of political ideology)—a proxy for pre-existing climate change beliefs—and
582 endorsement of the climate-change and mass-arson causal claims. Political liberalism was
583 associated with stronger endorsement of the climate-change causal claim ($r = -.34$, 95% CI
584 = $[-0.45, -0.21]$, $p < .001$), whereas political conservatism was associated with stronger
585 endorsement of the mass-arson causal claim ($r = .27$, 95% CI = $[0.15, 0.41]$, $p < .001$).
586 However, both correlations were relatively weak, indicating that the perception that
587 climate change exacerbated the fires was not tied solely to pre-existing political beliefs, and
588 that the mass-arson causal claim meshed with a broad range of respondents—including
589 some who accept anthropogenic climate change—providing only limited support for a
590 motivated-reasoning explanation (see Supplementary Results for correlations between the
591 other auxiliary psychological characteristic measures and the Fire Perception Scale causal
592 items).

593 **Policy direction preferences**

594 Policy direction preferences in response to the Black Summer differed among
595 participants. Most participants desired more governmental climate change mitigation
596 policies ($n = 145$, 68.08%), or no change to existing policies ($n = 54$, 25.35%). Only a
597 small minority desired less or no governmental climate change mitigation policies ($n = 14$,

598 6.57%). However, policy direction preferences differed markedly across segments. The
599 majority of Acceptors and Fencesitters preferred more mitigation policies, whereas most
600 Sceptics preferred no change (Figure 4).

601 To test whether these segment differences were statistically reliable, we estimated a
602 binomial logistic regression model predicting the odds of preferring more mitigation policies
603 as a function of segment membership (see Supplementary Results for full model outcomes).
604 Sceptics were excluded from the analysis because none expressed this preference. A
605 likelihood-ratio test indicated that segment membership significantly predicted policy
606 direction preferences ($\chi^2 (1) = 35.45, p < .001$, Cohen's $\omega = 0.43$). Acceptors
607 demonstrated a markedly greater preference for more mitigation policies than Fencesitters,
608 with 89.66% ($n = 104$) endorsing this option compared with 51.90% of Fencesitters ($n =$
609 41), corresponding to an odds ratio of 8.03 (95% CI = [3.92, 17.49], $p < .001$).

610 We explored participants' text-based justifications for their policy direction
611 preferences using an emotion analysis. Emotional associations for each word were detected
612 using the NRC Word–Emotion Association Lexicon (Mohammad & Turney, 2013), a
613 crowdsourced lexicon in which words are manually annotated for their association with
614 eight emotions: anger, fear, anticipation, trust, surprise, sadness, joy, and disgust. For each
615 response, we coded the presence of each emotion dichotomously (present/not present) if the
616 response contained at least one word associated with that emotion.

617 The most common emotion expressed by participants was fear ($n = 67, 31.46\%$),
618 which appeared in justifications for both more action (e.g., “the recent bushfire is a wake-up
619 call. how much more *worse* do we want to experience?”, fear words italicised) and for no
620 change or less action (e.g., “...100 arsonists were charged as a starter and it was the fuel left
621 on the ground for decades that made the fires so much *worse* and caused the *disaster*”).

622 To test whether emotional content varied across segments, we estimated a binomial
623 logistic regression model for each emotion with segment membership as the predictor (see
624 Supplementary Results for full model outcomes). We found no statistically significant

625 differences between segments for most emotions, except for fear. Acceptors were more
626 likely than Fencesitters to use at least one fear-related word, with 40.52% ($n = 47$) doing so
627 compared with 17.72% of Fencesitters ($n = 14$), corresponding to an odds ratio of 3.16
628 (95% CI = [1.59, 6.28], $p = .001$). Sceptics fell between these two segments, with 33.33% (n
629 = 6) using at least one fear-related word, and did not reliably differ from either Acceptors
630 or Fencesitters.

631 Discussion

632 In this paper, we reported three audience segmentation studies of Australian
633 climate-related opinions employing the Q methodology that were conducted at different
634 stages of the Australian Black Summer bushfires. Study 1 was conducted before the peak
635 of the bushfires (September 2019), whereas Studies 2 and 3 took place after the peak
636 (February and March 2020, respectively). This afforded us a natural experiment to
637 determine whether the occurrence of the bushfires catalysed a change in Australian
638 climate-related opinions. All studies required participants to complete a Q-sort task
639 ranking opinion statements about climate change by degree of endorsement. Studies 1 and
640 3 additionally incorporated auxiliary measures of prominent psychological characteristics,
641 including measures of climate change cognition and affect. Study 3 also incorporated
642 measures of bushfire perceptions and support for climate policy. We examined whether the
643 three-segment solution and pattern of psychological characteristic differences between
644 segments reported previously (Andreotta et al., 2022) replicated across studies, whether
645 the proportion of respondents in each segment and their climate change cognition and
646 affect differed before versus after the peak of the Black Summer bushfires, and how
647 segments differed in their bushfire perceptions and policy preferences.

648 Summary of key findings

649 Across all three studies, we find consistent support for a three-segment solution of
650 Australian climate-related opinions. The three segments are the Acceptors, Fencesitters,
651 and Sceptics—ordered from the highest to the lowest belief in anthropogenic climate

652 change, trust in climate science, concern about the issue, and motivation to tackle it. The
653 segments are remarkably robust, with near-perfect correlations between the archetypal
654 sorting styles of Acceptors of all studies and Sceptics of all studies. This is impressive given
655 that the archetypal sorting styles depend on the correlations between the rank orderings of
656 30 statements, which have several thousand unique permutations. It appears that the
657 Black Summer bushfires did not change the definitional point of view of an Acceptor,
658 Fencesitter, or Sceptic.

659 Further evidence for the stability of audience segments across studies was derived
660 from the consistent relationship between segments and psychological characteristics in
661 Studies 1 and 3. Acceptors were characterised by low epistemic and response scepticism,
662 high worry about climate change, a high belief that carbon-emitting human activities cause
663 climate change, a high belief in the societal consequences of climate change, a politically
664 liberal ideology, and an “environment-as-ductile” worldview, meaning they think the
665 environment has a limited capacity to recover from damage. Sceptics, by contrast, were
666 characterised by high epistemic and response scepticism, low worry about climate change, a
667 low belief in the environmental harms of climate change, high confidence in their
668 knowledge about climate change, a politically conservative ideology, and an
669 “environment-as-elastic” worldview, meaning they think the environment can easily recover
670 from damage. In comparison to these two segments, Fencesitters were more neutral
671 concerning political ideology and environmental worldviews. However, they scored higher
672 on a measure of general conspiratorial thinking than both Acceptors and Sceptics.

673 We found little evidence to suggest that the Black Summer bushfires catalysed a
674 shift in climate-related opinions toward greater acceptance and concern. Instead, across the
675 three studies, the proportion of Acceptors decreased slightly and the proportion of
676 Fencesitters increased, while Sceptics remained stable. Although the changes in segment
677 membership over time did not reach conventional levels of statistical significance, the effect
678 was only marginally non-significant and may reflect the smaller sample size in Study 3

679 compared to Studies 1 and 2.

680 The auxiliary measures of psychological characteristics incorporated in Studies 1 and
681 3 included several measures of climate change knowledge (viz., knowledge volume, mental
682 models of climate change, epistemic and response scepticism) and affect (viz., worry about
683 climate change), affording us an additional set of indicators to determine if the bushfires
684 provoked a change in beliefs about, and emotional responses towards, climate change.
685 However, consistent with the results derived from the Q-sort task, we generally found no
686 statistically reliable change in responses on these measures between Studies 1 and 3. The
687 only exception was a small increase in Australians' perceptions of natural cycles (e.g.,
688 volcanic eruptions, solar fluctuations) as a cause of climate change. Again, this evidence
689 contradicts the claim that the Black Summer bushfires catalysed greater acceptance and
690 concern about anthropogenic climate change. It is unclear why the Black Summer bushfires
691 might have strengthened belief in the role of natural cycles in climate change. One
692 possibility is that participants recognised the greenhouse gases released by the bushfires
693 and perceived them—along with weather events more broadly—as part of a natural
694 fluctuation, leading to greater endorsement of natural cycles as a cause of climate change.

695 We did not find any statistically reliable differences between Studies 1 and 3 in a
696 range of dispositional measures of cognitive style, ideology, worldviews, values, and
697 personality. This outcome was not unexpected as these are measures of more enduring
698 psychological traits that tend to remain stable over time.

699 Perceptions of the bushfires in Study 3 varied across segments. Acceptors were most
700 likely to endorse the view that climate change worsened the fires, followed by Fencesitters,
701 with Sceptics showing the lowest endorsement. The reverse pattern was observed for the
702 misinformation-based arson explanation. Sceptics most strongly endorsed the mass-arson
703 claim, Fencesitters showed moderate endorsement, and even a large minority of Acceptors
704 endorsed it. Endorsement of the mass-arson explanation was negatively correlated with
705 endorsement of the climate-change explanation. All segments agreed with the claim that

706 the bushfires were severe, with Acceptors showing the strongest endorsement. However,
707 Fencesitters were uniquely likely to endorse the counterfactual claim that climate change
708 made the bushfires less likely—more so than both Acceptors and Sceptics.

709 Finally, support for climate policy in Study 3 also varied by segments. Acceptors
710 almost universally agreed that the bushfires warranted more action by Australia to address
711 climate change, whereas Fencesitters were roughly evenly split between favouring more
712 action and no change in action. Sceptics mostly favoured no change in action by Australia
713 to address climate change. Fear was routinely used by all segments, but in particular,
714 Acceptors, to justify their policy position.

715 **Why the Black Summer did not lead to greater climate change concern**

716 Our results add to the mixed findings on the relationship between climate-related
717 opinions and personal experience of extreme climate events (Howe, 2021; Howe et al., 2019;
718 Xia et al., 2022). At the outset, we identified three moderators of the effect of
719 extreme-event exposure on climate-related opinions—event attribution, motivated
720 reasoning, and media attention (Sisco, 2021). Taken together, these moderators may offer a
721 coherent explanation of why the Black Summer bushfires did not lead to greater
722 acceptance and concern about climate change.

723 The first and most important moderator is event attribution. Previous work shows
724 that extreme-event exposure influences climate-related opinions only among individuals
725 who believe the event was caused by climate change (McCright et al., 2014; Ogunbode
726 et al., 2019, 2020; Wong-Parodi & Rubin, 2022). In Study 3, this key precondition was not
727 met for the vast majority of respondents—and critically, it was not achieved for
728 Fencesitters, the segment most theoretically open to changing their opinions in response to
729 personal experience. Most Fencesitters and all Sceptics rejected the notion that climate
730 change contributed to the fires and instead attributed the bushfires primarily to arson.
731 Although Acceptors were more likely to endorse a climate-change explanation, even within
732 this segment, a sizeable minority also attributed the fires to arson. Thus, because most

733 respondents—including the Fencesitters most amenable to opinion change—did not
734 interpret the fires as climate-related, the chief mechanism that links extreme-event
735 exposure to increased climate change concern was not engaged.

736 The second moderator, motivated reasoning, partially helps to explain why these
737 attribution patterns emerged. Consistent with previous research (Ogunbode et al., 2019,
738 2020), political ideology influenced causal attributions—liberals were more likely to
739 attribute the fires to climate change, whereas conservatives were more likely to endorse the
740 arson explanation. However, motivated reasoning alone cannot fully account for the
741 findings, as belief in the arson narrative was evident across all three segments—including
742 among some Acceptors—suggesting that wider informational influences were at play.

743 The third moderator that captures these wider informational influences is media
744 attention. Extreme-climate events can serve as “focusing events” (Birkland, 1998; Birkland
745 & Schwaebel, 2019), increasing public and media attention and generating opportunities to
746 highlight the links between such events and climate change (Kirilenko et al., 2015;
747 Marquart-Pyatt et al., 2014; Sisco et al., 2017). Although the Black Summer bushfires
748 received substantial coverage, the media environment was highly contested. After an initial
749 period emphasising the role of climate change, the narrative quickly became politicised
750 (Mocatta & Hawley, 2020). Liberal media outlets continued to stress the role of climate
751 change in worsening the fires, whereas conservative outlets were dismissive of this
752 connection. During the peak of the bushfires, misinformation—particularly exaggerated
753 claims about widespread arson—proliferated across social media and conservative media
754 outlets. Such misinformation is notoriously difficult to correct (Ecker et al., 2022;
755 Lewandowsky et al., 2012), and it is possible that despite officials’ efforts to dismiss the
756 arson claims (Knaus, 2020; Readfearn, 2019), these narratives had already taken hold by
757 the time Studies 2 and 3 were conducted. The widespread acceptance of the mass-arson
758 explanation among Fencesitters and Sceptics, in particular, is consistent with this
759 interpretation. It may also help explain why the proportion of Acceptors decreased while

760 the proportion of Fencesitters increased over time. Misinformation exposure may have
761 rendered some Acceptors more sceptical of the scientific consensus on climate change.

762 However, misinformation is not the only media-related explanation. A content
763 analysis of Australian news coverage by Burgess et al. (2020) found that although nearly
764 half of articles mentioned climate change, only 16% explicitly attributed the bushfires to
765 climate change—even though climate scientists and scientific bodies made this connection
766 during the fires (Climate Council, 2019; Hughes et al., 2020; Readfearn, 2020; World
767 Weather Attribution Consortium, 2020)—and even fewer explained how climate change
768 contributed to the fires. Similar results were observed in a study examining how Australian
769 climate-action non-governmental organisations framed the link between the Black Summer
770 bushfires and climate change on the social media platform Twitter (now X; Ettinger et al.,
771 2023). These results indicate that climate-communication stakeholders may not have
772 provided the public with sufficiently clear explanations of the relationship between climate
773 change and bushfire risk, limiting opportunities for accurate event attribution.

774 Finally, Studies 2 and 3 were undertaken after the World Health Organisation
775 (WHO) declared the COVID-19 outbreak a Public Health Emergency of International
776 Concern in January 2020, and Study 3 coincided with the WHO characterising the
777 outbreak as a pandemic in March 2020. The abrupt nature of the pandemic meant that it
778 quickly became the centre of global media and public attention, diverting the spotlight
779 away from the bushfires and climate change (Evensen et al., 2021; Loureiro & Alló, 2021;
780 Rauchfleisch et al., 2023; Smirnov & Hsieh, 2022; Stoddart et al., 2023). Accordingly, the
781 absence of a shift towards greater climate-change concern may reflect a redirection of
782 attention and worry towards the rapidly escalating global health crisis.

783 It is important to acknowledge that these explanations remain tentative, as our
784 study was not a true experiment. Specifically, we lack the relevant counterfactual
785 conditions to facilitate causal inference—for example, a less polarised media environment,
786 an absence of misinformation, or a scenario in which the bushfires did not coincide with a

787 global health crisis.

788 **Implications for theoretical accounts of the effects of extreme-event experiences**

789 At first blush, the results appear at variance with the psychological distance, issue
790 salience, and affect activation accounts introduced at the outset. According to these
791 accounts, personal experience of the bushfires should have made climate change feel more
792 psychologically proximal, heightened the salience of the issue, and elicited affective
793 responses that increased perceived climate risk. Consequently, we would expect to observe
794 an increase in the proportion of Acceptors and a decrease in the proportion of Fencesitters
795 over time, and/or shifts on the continuous climate change cognition and affect measures
796 towards greater acceptance and concern about the issue. Yet, contrary to these predictions,
797 we found a slight decrease in Acceptors and a corresponding increase in Fencesitters, and
798 no reliable changes on the continuous cognition and affect measures.

799 However, these findings must be interpreted in light of the moderating variables just
800 considered. A tacit assumption of the above theoretical accounts is that people perceived
801 the bushfires as a causal consequence of climate change or as an event exacerbated by
802 climate change. As our results show, this assumption did not hold for a substantial
803 proportion of respondents. Many attributed the bushfires primarily to mass arson causes,
804 and endorsement of this claim was associated with rejection of the climate-change causal
805 explanation. Accordingly, the key preconditions required for the psychological distance,
806 issue salience, and affect activation accounts to generate the predicted changes in
807 climate-related opinions were unlikely to have been met. This limits the extent to which
808 strong inferences can be drawn about the validity of these theories in this context.

809 Beyond these psychological accounts, the findings have implications for the
810 focusing-events framework (Birkland, 1998; Birkland & Schwaebel, 2019). Extreme events
811 can serve as focusing events that increase public attention to an issue and create
812 opportunities for attitude change. However, the Black Summer bushfires did not appear to
813 have this effect. Media narratives surrounding the fires quickly became contested and

814 politicised, with climate-change interpretations competing against misinformation-based
815 arson narratives, while the emerging COVID-19 crisis eventually hijacked the spotlight of
816 public and media attention. This suggests that focusing events are vulnerable to
817 politicisation, alternative causal narratives, and competing, attention-grabbing events.
818 Such conditions may prevent the expected increase in climate-change concern or even
819 produce shifts toward greater scepticism if misinformation about the event dominates
820 media and public discourse.

821 **Implications for climate change communication**

822 Our results have implications for how climate-communication stakeholders frame
823 extreme climate events. Providing clear statements attributing such events to climate
824 change is important, given evidence that event attribution is a key moderator of the effect
825 of extreme-event exposure on climate-related opinions. However, an even more critical step
826 is to explain, in simple terms, how climate change contributed to the event. Doing so
827 makes the causal claim more credible and memorable because the underlying mechanism is
828 understood (Hastie, 1984) and may help to stave off misconceptions fuelled by
829 misinformation. For instance, if individuals understand that climate change did not ignite
830 the fires but rather created the unusually hot and dry conditions that enabled them to
831 burn intensely and spread rapidly, they may be less likely to be swayed by claims that the
832 fires were caused by arson rather than climate change. In other words, they will recognise
833 that the source of ignition is largely inconsequential—climate change does not start
834 bushfires, rather it creates conditions that worsen them once ignited. It is clear from the
835 content analyses of mass media and social media coverage of the Black Summer by Burgess
836 et al. (2020) and Ettinger et al. (2023), respectively, described earlier, that such
837 explanatory links were frequently missing—even though climate scientists and scientific
838 bodies explicitly connected the fires to climate change at the time (Climate Council, 2019;
839 Hughes et al., 2020; Readfearn, 2020; World Weather Attribution Consortium,
840 2020)—suggesting that more could have been done to communicate clearly how climate

841 change exacerbated the fires.

842 When misinformation about the causes of an extreme climate event circulates in
843 mass and social media, timely correction may be crucial to prevent it from taking root.
844 During the Black Summer bushfires, state fire services, the police, and journalists all
845 played roles in countering misinformation about the fires. However, not all corrections are
846 equally effective in debunking misinformation. Cognitive psychologists have identified
847 numerous best practices for debunking misinformation (Ecker et al., 2022; Lewandowsky
848 et al., 2012), and these strategies have been distilled into an accessible handbook for
849 non-experts (Lewandowsky et al., 2020). A core principle is that effective corrections
850 should not simply retract a false claim but provide a plausible alternative explanation for
851 the cause of an event (Ecker et al., 2022). For instance, when countering the claim that
852 “the bushfires were caused by arsonists,” a correction that offers an alternative causal
853 account (e.g., “the bushfires were ignited by lightning”) is more effective than one that
854 merely states that the claim is false (e.g., “there is no evidence of arson”).

855 Climate-communication stakeholders should incorporate these best-practice insights into
856 their messaging to increase the effectiveness of their debunking efforts. Even members of
857 the public can help limit the spread of misinformation. For example, in their analysis of
858 the #ArsonEmergency tweets on Twitter, Weber and colleagues (D. Weber et al., 2020,
859 2022) identified two different communities, one involved in the propagation of the false
860 claims and another that sought to debunk those claims.

861 Finally, our results have implications for engaging with the three audience segments.
862 Acceptors and Sceptics may be relatively low priorities for public engagement campaigns,
863 albeit for different reasons. Acceptors already strongly believe in anthropogenic climate
864 change, are highly trusting of climate science, and are strongly supportive of climate
865 action. Accordingly, additional messaging is unlikely to appreciably shift their views.
866 Sceptics, by contrast, have firmly entrenched beliefs. Their conservative political ideology
867 and environment-as-elastic worldviews render them motivated to discount climate science,

meaning they are highly resistant to belief revision in the face of climate science information (Andreotta et al., 2022). Combined with the fact that they are few in number, these characteristics suggest there may be little merit in trying to shift the opinions of this segment (although see Andreotta et al., 2022, for a more nuanced account). By comparison, Fencesitters represent a more promising group for public engagement. They are more neutral in terms of political ideology and environmental worldviews, meaning they are not politically motivated to oppose climate science, in contrast to Sceptics. Indeed, Fencesitters update their beliefs in response to climate science information almost as much as Acceptors do (Andreotta et al., 2022). They are a relatively large segment with more intermediate climate-related opinions, meaning that with the right messaging strategy, they could perhaps be transformed into Acceptors.

Accordingly, we suggest that public engagement campaigns should target the Fencesitters. Unfortunately, we know little about the characteristics of this segment. This is, in part, because, given the inherent variability of individuals within this segment, we cannot construct an archetypal Q sort of their statement rankings. However, what we do know is that, compared to the Acceptors and Sceptics, they are more likely to endorse conspiracy theories¹. This curious result, first documented in our original report of Studies 1 and 2 (Andreotta et al., 2022), was replicated in Study 3, suggesting it is a robust feature of this segment. Given that much climate misinformation is grounded in conspiracy theories (Coan et al., 2021; Cook, 2020), our key piece of advice for climate-communication stakeholders is that debunking efforts should pay particular attention to exposing how climate misinformants employ conspiracy theories and related deception techniques to mislead the public. Such refutation techniques may be necessary to prevent climate

¹ It is unclear why Fencesitters scored higher on conspiracist ideation than Acceptors and Sceptics. If anything, we would have expected Sceptics to score higher on this psychological attribute, based on previous evidence showing an association between conspiracy theory endorsement and climate-change scepticism (Lewandowsky et al., 2013). One possibility is that the heightened responses of Fencesitters on this measure reflect a broader psychological attribute, such as openness to alternative viewpoints—the willingness to consider alternative ideas, suggestions, or explanations of events (Tsai & Li, 2023).

891 misinformation from transforming Fencesitters into Sceptics.

892 **Potential limitations**

893 Before closing, some potential limitations of the current work merit comment. First,
894 Studies 2 and 3 were undertaken after the peak in the bushfires, which occurred between
895 December 2019 and January 2020. Therefore, we cannot rule out the possibility that had
896 data been collected during the most intense period of the crisis, a transient increase in
897 climate change acceptance and concern may have been detected. Nevertheless, even if this
898 were so, our longitudinal comparison suggests such a change in opinions would have been
899 temporary and short-lived.

900 Second, although around 80% of the Australian population was affected either
901 directly or indirectly by the fires (Hughes et al., 2020), we did not ask respondents about
902 the nature of their experiences. The distinction between direct and indirect experience is
903 important because studies have shown that direct experience of an extreme event is more
904 predictive of climate-related opinions than indirect experience (Ogunbode et al., 2020;
905 Zanocco et al., 2019). Accordingly, changes in climate-related opinions are more likely to be
906 observed among individuals who had severe direct negative experiences of the fires, such as
907 those who suffered property damage. However, we note that even if we had measured the
908 nature of our respondents' experiences, individuals who had a severe personal experience of
909 the fires are likely under-represented in Studies 2 and 3, as the disaster's impact would
910 have precluded them from responding to our web-panel surveys (Howe, 2021).

911 Third, and relatedly, we did not collect respondents' state or region of residence.

912 Because the timing, intensity, and immediacy of the bushfires varied across Australia,
913 regional variation could have shaped respondents' levels of exposure and perceptions.
914 Although indirect exposure—in the form of smoke, extensive media coverage, and national
915 political debate—was widespread across the country, the absence of geographic information
916 means we cannot rule out the possibility that regional differences contributed to some of
917 the observed trends.

918 Finally, we note that power is always a concern when retaining the null hypothesis.

919 Our sample size had sufficient power to detect even very weak omnibus effects, such as
920 study differences in segment membership and climate change cognition and affect. We had
921 less power to detect post hoc effects between specific segments and specific studies, such as
922 the increase in Fencesitters between Study 1 and Study 3. However, our studies detected
923 some key segment differences, such as Fencesitters endorsing arson-based explanations of
924 the Black Summer bushfires at a greater rate than Acceptors.

925 **Conclusions**

926 Previous research examining the association between personal experience of extreme

927 climate events and climate-related opinions has produced contradictory findings. It is
928 therefore perhaps unsurprising that we found no evidence that the Black Summer bushfires
929 prompted a shift towards greater acceptance of, and concern about, anthropogenic climate

930 change. A key determinant of whether extreme-event exposure influences climate-related
931 opinions is whether people attribute the event to climate change. Accordingly, the failure
932 of Fencesitters to attribute the bushfires to climate change is the most credible explanation
933 for the lack of a positive shift in climate-related opinions. This lack of attribution may

934 reflect the divergent mass-media and social-media narratives surrounding the bushfires. In
935 particular, misinformation dismissing the connection between climate change and the

936 bushfires may have “crowded out” messages linking the fires to climate change. That such

937 misinformation influenced perceptions is evidenced by the sizeable minority of Acceptors

938 who did not reject the arson claim, and by the majority of Fencesitters and Sceptics who

939 endorsed it. Although some mass-media coverage mentioned climate change, relatively few

940 articles explicitly linked the bushfires to climate change, and fewer still explained the

941 mechanism by which climate change intensifies bushfire conditions—another likely reason

942 why attribution rates were low among Fencesitters. Motivated reasoning also played a role,

943 but its influence appeared limited. While politically conservative respondents were more

944 likely to endorse the arson explanation, belief in the mass-arson narrative was found across

945 all three segments, indicating that misinformation narratives exerted widespread influence.

946 The implications of these observations are twofold. First, climate-communication

947 stakeholders may need to emphasise not only the connection between an extreme event and

948 climate change but also explain clearly how climate change contributed to that event.

949 Second, where misinformation about the cause of an extreme event circulates, proactive

950 efforts must be undertaken to debunk the misleading claims. This requires that

951 climate-communication stakeholders are aware of best practices for refuting misinformation

952 so that their interventions can achieve maximal impact.

953 **References**

954 Albright, E. A., & Crow, D. (2019). Beliefs about climate change in the aftermath of
955 extreme flooding. *Climatic Change*, 155(1), 1–17.

956 Andreotta, M., Boschetti, F., Farrell, S., Paris, C., Walker, I., & Hurlstone, M. (2022).
957 Evidence for three distinct climate change audience segments with varying
958 belief-updating tendencies: Implications for climate change communication. *Climatic
959 Change*, 174(3-4), 32.

960 Andreotta, M., Nugroho, R., Hurlstone, M. J., Boschetti, F., Farrell, S., Walker, I., &
961 Paris, C. (2019). Analyzing social media data: A mixed-methods framework
962 combining computational and qualitative text analysis. *Behavior research methods*,
963 51, 1766–1781.

964 Arel-Bundock, V., Greifer, N., & Heiss, A. (n.d.). How to interpret statistical models using
965 `marginal effects` in R and Python. *Journal of Statistical Software*.
966 <https://marginal effects.com>

967 Australian Greens. (2020, November). A burning issue.

968 Bergquist, M., Nilsson, A., & Schultz, P. (2019). Experiencing a severe weather event
969 increases concern about climate change. *Frontiers in psychology*, 10, 220.

970 Birkland, T. A. (1998). Focusing events, mobilization, and agenda setting. *Journal of
971 public policy*, 18(1), 53–74.

972 Birkland, T. A., & Schwaebel, K. L. (2019). Agenda setting and the policy process:
973 Focusing events. In *Oxford research encyclopedia of politics*.

974 Boer, M. M., Resco de Dios, V., & Bradstock, R. A. (2020). Unprecedented burn area of
975 Australian mega forest fires. *Nature Climate Change*, 10(3), 171–172.
976 <https://doi.org/10.1038/s41558-020-0716-1>

977 Boon, H. J. (2016). Perceptions of climate change risk in four disaster-impacted rural
978 australian towns. *Regional environmental change*, 16, 137–149.

979 Bostrom, A., O'Connor, R. E., Böhm, G., Hanss, D., Bodi, O., Ekström, F., Halder, P.,
980 Jeschke, S., Mack, B., Qu, M., Rosentrater, L., Sandve, A., & Sælensminde, I.
981 (2012). Causal thinking and support for climate change policies: International
982 survey findings. *Global Environmental Change*, 22(1), 210–222.
983 <https://doi.org/10.1016/j.gloenvcha.2011.09.012>

984 Boudet, H., Giordano, L., Zanocco, C., Satein, H., & Whitley, H. (2020). Event attribution
985 and partisanship shape local discussion of climate change after extreme weather.
986 *Nature Climate Change*, 10(1), 69–76.

987 Bromley-Trujillo, R., & Poe, J. (2020). The importance of salience: Public opinion and
988 state policy action on climate change. *Journal of Public Policy*, 40(2), 280–304.

989 Brown, G., & Caisley, O. (2019, November). *Greens policies increasing bushfire threat*.
990 <https://www.theaustralian.com.au/nation/politics/deputy-pmmichael-%20mccormack-slams-raving-innercity-lunatics-for-linkingclimate-%20change-to-fires/newsstory/%205c3ba8d3e72bc5f10fcf49a94fc9be85>

993 Brown, S. R. (1982). *Political subjectivity: Applications of q methodology in political
994 science*. Yale University Press, New Haven; London.

995 Burgess, T., Burgmann, J. R., Hall, S., Holmes, D., & Turner, E. (2020). Black summer:
996 Australian newspaper reporting on the nation's worst bushfire season. *Monash
997 climate change communication research hub*, 30.

998 Capstick, S. B., & Pidgeon, N. F. (2014). What is climate change scepticism? Examination
999 of the concept using a mixed methods study of the UK public. *Global Environmental
1000 Change*, 24, 389–401. <https://doi.org/10.1016/j.gloenvcha.2013.08.012>

1001 Carlton, J. S., Mase, A. S., Knutson, C. L., Lemos, M. C., Haigh, T., Todey, D. P., &
1002 Prokopy, L. S. (2016). The effects of extreme drought on climate change beliefs, risk
1003 perceptions, and adaptation attitudes. *Climatic change*, 135, 211–226.

1004 Carmichael, J. T., & Brulle, R. J. (2017). Elite cues, media coverage, and public concern:
1005 An integrated path analysis of public opinion on climate change, 2001–2013.
1006 *Environmental Politics*, 26(2), 232–252.

1007 Carmichael, J. T., Brulle, R. J., & Huxster, J. K. (2017). The great divide: Understanding
1008 the role of media and other drivers of the partisan divide in public concern over
1009 climate change in the usa, 2001–2014. *Climatic change*, 141, 599–612.

1010 Climate Council. (2019, November). *The facts about bushfires and climate change*.
1011 <https://www.climatecouncil.org.au/not-normal-climate-change-bushfire-web/>

1012 Coan, T. G., Boussalis, C., Cook, J., & Nanko, M. O. (2021). Computer-assisted
1013 classification of contrarian claims about climate change. *Scientific Reports*, 11(1),
1014 22320.

1015 Cook, J. (2020). Deconstructing climate science denial. *Research Handbook on
1016 Communicating Climate Change*, 62–78.

1017 Council, A. P. (2021, February). *Adjudication 1792* (tech. rep.). Australian Press Council.

1018 Crawley, S., Coffé, H., & Chapman, R. (2022). Climate belief and issue salience:
1019 Comparing two dimensions of public opinion on climate change in the eu. *Social
1020 Indicators Research*, 162(1), 307–325.

1021 Cutler, M. J., Marlon, J., Howe, P., & Leiserowitz, A. (2020). ‘is global warming affecting
1022 the weather?’ evidence for increased attribution beliefs among coastal versus inland
1023 us residents. *Environmental Sociology*, 6(1), 6–18.

1024 Dai, J., Kesternich, M., Löschel, A., & Ziegler, A. (2015). Extreme weather experiences and
1025 climate change beliefs in china: An econometric analysis. *Ecological Economics*, 116,
1026 310–321.

1027 Demski, C., Capstick, S., Pidgeon, N., Sposato, R. G., & Spence, A. (2017). Experience of
1028 extreme weather affects climate change mitigation and adaptation responses.
1029 *Climatic Change*, 140, 149–164.

1030 Druckman, J. N., & McGrath, M. C. (2019). The evidence for motivated reasoning in
1031 climate change preference formation. *Nature Climate Change*, 9(2), 111–119.

1032 Ecker, U. K., Lewandowsky, S., Cook, J., Schmid, P., Fazio, L. K., Brashier, N.,
1033 Kendeou, P., Vraga, E. K., & Amazeen, M. A. (2022). The psychological drivers of
1034 misinformation belief and its resistance to correction. *Nature Reviews Psychology*,
1035 1(1), 13–29.

1036 Efron, B., & Tibshirani, R. (1994). *Introduction to the Bootstrap*. Chapman & Hall.

1037 Enzler, H. B. (2015). Consideration of future consequences as a predictor of
1038 environmentally responsible behavior: Evidence from a general population study.
1039 *Environment and Behavior*, 47(6), 618–643.
1040 <https://doi.org/10.1177/0013916513512204>

1041 Ettinger, J., Sanford, M., Walton, P., Holmes, D., & Painter, J. (2023). Social media
1042 messaging by climate action ngos: A case study of the 2019–2020 australian black
1043 summer bushfires. *Oxford Open Climate Change*, 3(1), kgad011.

1044 Evensen, D., Whitmarsh, L., Bartie, P., Devine-Wright, P., Dickie, J., Varley, A., Ryder, S.,
1045 & Mayer, A. (2021). Effect of “finite pool of worry” and covid-19 on uk climate
1046 change perceptions. *Proceedings of the National Academy of Sciences*, 118(3),
1047 e2018936118.

1048 Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using
1049 G*Power 3.1: Tests for correlation and regression analyses. *Behavior Research
1050 Methods*, 41(4), 1149–1160. <https://doi.org/10.3758/BRM.41.4.1149>

1051 Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical
1052 power analysis program for the social, behavioral, and biomedical sciences. *Behavior
1053 Research Methods*, 39(2), 175–191. <https://doi.org/10.3758/BF03193146>

1054 Friedman, J., Tibshirani, R., & Hastie, T. (2010). Regularization paths for generalized
1055 linear models via coordinate descent. *Journal of Statistical Software*, 33(1), 1–22.
1056 <https://doi.org/10.18637/jss.v033.i01>

1057 Gourlay, C., Leslie, T., Martino, M., & Spraggon, B. (2020, February). *How heat and*
1058 *drought turned australia into a tinderbox.* <https://www.abc.net.au/news/2020-02-19/australia-bushfires-how-heat-and-drought-created-a-tinderbox/11976134>

1059

1060 Hastie, R. (1984). Causes and effects of causal attribution. *Journal of Personality and*
1061 *Social Psychology, 46*(1), 44.

1062 Head, L. (2020). Transformative change requires resisting a new normal. *Nat. Clim.*
1063 *Chang., 10*(3), 173–174. <https://doi.org/10.1038/s41558-020-0712-5>

1064 Holm, S. (1979). A simple sequentially rejective multiple test procedure. *Scandinavian*
1065 *Journal of Statistics, 6*(2), 65–70. Retrieved September 20, 2024, from
1066 <http://www.jstor.org/stable/4615733>

1067 Hornsey, M. J., Harris, E. A., Bain, P. G., & Fielding, K. S. (2016). Meta-analyses of the
1068 determinants and outcomes of belief in climate change. *Nature climate change, 6*(6),
1069 622–626.

1070 Howe, P. D. (2021). Extreme weather experience and climate change opinion. *Current*
1071 *Opinion in Behavioral Sciences, 42*, 127–131.

1072 Howe, P. D., Marlon, J. R., Mildenberger, M., & Shield, B. S. (2019). How will climate
1073 change shape climate opinion? *Environmental Research Letters, 14*(11), 113001.

1074 Hughes, L., Steffen, W., Mullins, G., Dean, A., Weisbrot, E., & Rice, M. (2020). *Summer*
1075 *of crisis.* Climate Council.

1076 James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). *An Introduction to Statistical*
1077 *Learning: With Applications in R.* Springer US.
1078 <https://doi.org/10.1007/978-1-0716-1418-1>

1079 Johnstone, C. (2019, December). *History of disasters shows there is nothing new about*
1080 *nation's destructive blazes.* <https://www.theaustralian.com.au/nation/history-of-disastersshows-there-is-nothing-new-about-nations-destructive-blazes/newsstory/%20f43c2a6037a8b0e422a69880bce10139>

1081

1082

1083 1083 Kay, A. C., & Jost, J. T. (2003). Complementary justice: Effects of "Poor But Happy" and
1084 "Poor but Honest" stereotype exemplars on system justification and implicit
1085 activation of the justice motive. *Journal of personality and social psychology*, 85(5),
1086 823–837. <https://doi.org/10.1037/0022-3514.85.5.823>

1087 1087 Keller, T., Graham, T., Angus, D., Bruns, A., Nijmeijer, R., Nielbo, K. L., Bechmann, A.,
1088 Neudert, L.-M., Marchal, N., Bradshaw, S., Rossini, P., Stromer-Galley, J.,
1089 Baptista, E. A., & de Oliveira, V. V. (2020). 'Coordinated inauthentic behaviour'
1090 and other online influence operations in social media spaces. *AoIR Sel. Pap.*
1091 *Internet Res.* <https://doi.org/10.5210/spir.v2020i0.11132>

1092 1092 King, G., Schneer, B., & White, A. (2017). How the news media activate public expression
1093 and influence national agendas. *Science*, 358(6364), 776–780.

1094 1094 Kirilenko, A. P., Molodtsova, T., & Stepchenkova, S. O. (2015). People as sensors: Mass
1095 media and local temperature influence climate change discussion on twitter. *Global*
1096 *Environmental Change*, 30, 92–100.

1097 1097 Knaus, C. (2020, January). *Disinformation and lies are spreading faster than australia's*
1098 *bushfires*.
1099 <https://www.theguardian.com/australia-news/2020/jan/12/disinformation-and-lies-are-spreading-faster-than-australias-bushfires>

1101 1101 Kunda, Z. (1990). The case for motivated reasoning. *Psychological bulletin*, 108(3), 480.

1102 1102 Lacroix, K., Gifford, R., & Rush, J. (2020). Climate change beliefs shape the interpretation
1103 of forest fire events. *Climatic Change*, 159, 103–120.

1104 1104 Lakens, D. (2022). Sample Size Justification (D. van Ravenzwaaij, Ed.). *Collabra: Psychology*, 8(1), 33267. <https://doi.org/10.1525/collabra.33267>

1106 1106 Lang, C., & Ryder, J. D. (2016). The effect of tropical cyclones on climate change
1107 engagement. *Climatic change*, 135, 625–638.

1108 1108 Leiserowitz, A. (2006). Climate change risk perception and policy preferences: The role of
1109 affect, imagery, and values. *Climatic Change*, 77(1), 45–72.

1110 Lewandowsky, S., Cook, J., Ecker, U., Albarracin, D., Kendeou, P., Newman, E. J.,
1111 Pennycook, G., Porter, E., Rand, D. G., Rapp, D. N., et al. (2020). The debunking
1112 handbook 2020.

1113 Lewandowsky, S., Ecker, U. K., Seifert, C. M., Schwarz, N., & Cook, J. (2012).
1114 Misinformation and its correction: Continued influence and successful debiasing.
1115 *Psychological science in the public interest*, 13(3), 106–131.

1116 Lewandowsky, S., Oberauer, K., & Gignac, G. E. (2013). NASA faked the moon
1117 landing—therefore, (climate) science is a hoax: An anatomy of the motivated
1118 rejection of science. *Psychological Science*, 24(5), 622–633.
1119 <https://doi.org/10.1177/0956797612457686>

1120 Lindeman, M., & Verkasalo, M. (2005). Measuring values with the Short Schwartz's Value
1121 Survey. *Journal of Personality Assessment*, 85(2), 170–178.
1122 https://doi.org/10.1207/s15327752jpa8502_09

1123 Lins de Holanda Coelho, G., Hanel, P. H., & Wolf, L. J. (2018). The very efficient
1124 assessment of need for cognition: Developing a six-item version. *Assessment*, 27(8),
1125 1870–1885. <https://doi.org/10.1177/1073191118793208>

1126 Loureiro, M. L., & Alló, M. (2021). How has the covid-19 pandemic affected the climate
1127 change debate on twitter? *Environmental Science & Policy*, 124, 451–460.

1128 Lyons, B. A., Hasell, A., & Stroud, N. J. (2018). Enduring extremes? polar vortex, drought,
1129 and climate change beliefs. *Environmental Communication*, 12(7), 876–894.

1130 Malka, A., Krosnick, J. A., & Langer, G. (2009). The association of knowledge with
1131 concern about global warming: Trusted information sources shape public thinking.
1132 *Risk Analysis*, 29(5), 633–647. <https://doi.org/10.1111/j.1539-6924.2009.01220.x>

1133 Marquart-Pyatt, S. T., McCright, A. M., Dietz, T., & Dunlap, R. E. (2014). Politics
1134 eclipses climate extremes for climate change perceptions. *Global environmental
1135 change*, 29, 246–257.

1136 Marx, S. M., Weber, E. U., Orlove, B. S., Leiserowitz, A., Krantz, D. H., Roncoli, C., &
1137 Phillips, J. (2007). Communication and mental processes: Experiential and analytic
1138 processing of uncertain climate information. *Global Environmental Change*, 17(1),
1139 47–58.

1140 McCright, A. M., Dunlap, R. E., & Xiao, C. (2014). The impacts of temperature anomalies
1141 and political orientation on perceived winter warming. *Nature climate change*, 4(12),
1142 1077–1081.

1143 McDonald, R. I., Chai, H. Y., & Newell, B. R. (2015). Personal experience and the
1144 ‘psychological distance’ of climate change: An integrative review. *Journal of*
1145 *Environmental Psychology*, 44, 109–118.

1146 Mocatta, G., & Hawley, E. (2020). Uncovering a Climate Catastrophe? Media Coverage of
1147 Australia’s Black Summer Bushfires and the Revelatory Extent of the Climate
1148 Blame Frame. *MC J.*, 23(4). <https://doi.org/10.5204/mcj.1666>

1149 Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing a word-emotion association
1150 lexicon. *Comput. Intell.*, 29(3), 436–465.

1151 NSW Bushfire Inquiry. (2020, July). *Final Report of the NSW Bushfire Inquiry* (tech. rep.).
1152 NSW Government.

1153 Ogunbode, C. A., Demski, C., Capstick, S. B., & Sposato, R. G. (2019). Attribution
1154 matters: Revisiting the link between extreme weather experience and climate change
1155 mitigation responses. *Global Environmental Change*, 54, 31–39.

1156 Ogunbode, C. A., Doran, R., & Böhm, G. (2020). Individual and local flooding experiences
1157 are differentially associated with subjective attribution and climate change concern.
1158 *Climatic Change*, 162, 2243–2255.

1159 Osberghaus, D., & Demski, C. (2019). The causal effect of flood experience on climate
1160 engagement: Evidence from search requests for green electricity. *Climatic Change*,
1161 156(1-2), 191–207.

1162 Price, J. C., Walker, I. A., & Boschetti, F. (2014). Measuring cultural values and beliefs
1163 about environment to identify their role in climate change responses. *Journal of*
1164 *Environmental Psychology*, 37, 8–20. <https://doi.org/10.1016/j.jenvp.2013.10.001>

1165 R Core Team. (2023). *R: A language and environment for statistical computing*. R
1166 Foundation for Statistical Computing. Vienna, Austria. <https://www.R-project.org/>

1167 Rammstedt, B., & John, O. P. (2007). Measuring personality in one minute or less: A
1168 10-Item short version of the Big Five Inventory in English and German. *Journal of*
1169 *Research in Personality*, 41(1), 203–212. <https://doi.org/10.1016/j.jrp.2006.02.001>

1170 Rauchfleisch, A., Siegen, D., & Vogler, D. (2023). How covid-19 displaced climate change:
1171 Mediated climate change activism and issue attention in the swiss media and online
1172 sphere. *Environmental Communication*, 17(3), 313–321.

1173 Readfearn, G. (2019). Factcheck: Is there really a green conspiracy to stop bushfire hazard
1174 reduction? *The Guardian*.

1175 Readfearn, G. (2020, January). *Explainer: What are the underlying causes of australia's*
1176 *shocking bushfire season?*
1177 [https://www.theguardian.com/environment/2020/jan/13/explainer-what-are-the-](https://www.theguardian.com/environment/2020/jan/13/explainer-what-are-the-underlying-causes-of-australias-shocking-bushfire-season)
1178 [underlying-causes-of-australias-shocking-bushfire-season](https://www.theguardian.com/environment/2020/jan/13/explainer-what-are-the-underlying-causes-of-australias-shocking-bushfire-season)

1179 Reser, J. P., & Bradley, G. L. (2020). The nature, significance, and influence of perceived
1180 personal experience of climate change. *Wiley Interdisciplinary Reviews: Climate*
1181 *Change*, 11(5), e668.

1182 Reser, J. P., Bradley, G. L., & Ellul, M. C. (2014). Encountering climate change: 'seeing' is
1183 more than 'believing'. *Wiley Interdisciplinary Reviews: Climate Change*, 5(4),
1184 521–537.

1185 Ross, D., & Reid, I. (2020, January). *Bushfires: Firebugs fuelling crisis as national arson*
1186 *toll hits 183*.

1187 [https://www.theaustralian.com.au/nation/bushfires-firebugs-fuelling-%20crisis-](https://www.theaustralian.com.au/nation/bushfires-firebugs-fuelling-%20crisis-as-arson-arrest-toll-hits-183/newsstory/%2052536dc9ca9bb87b7c76d36ed1acf53f%3E)
1188 [as-arson-arrest-toll-hits-183/newsstory/%2052536dc9ca9bb87b7c76d36ed1acf53f%3E](https://www.theaustralian.com.au/nation/bushfires-firebugs-fuelling-%20crisis-as-arson-arrest-toll-hits-183/newsstory/%2052536dc9ca9bb87b7c76d36ed1acf53f%3E).

1189 Rural Fire Service. (2020). Gospers Mountain fire is now contained.

1190 Sambrook, K., Konstantinidis, E., Russell, S., & Okan, Y. (2021). The role of personal
1191 experience and prior beliefs in shaping climate change perceptions: A narrative
1192 review. *Frontiers in psychology*, 12, 669911.

1193 Shao, W., & Hao, F. (2020). Approval of political leaders can slant evaluation of political
1194 issues: Evidence from public concern for climate change in the usa. *Climatic
1195 Change*, 158(2), 201–212.

1196 Shine, J. (2020, January). *Statement regarding australian bushfires*.
1197 [https://www.science.org.au/news-and-events/news-and-media-releases/statement-
1198 regarding-australian-bushfires](https://www.science.org.au/news-and-events/news-and-media-releases/statement-regarding-australian-bushfires)

1199 Sisco, M. R., Bosetti, V., & Weber, E. U. (2017). When do extreme weather events
1200 generate attention to climate change? *Climatic change*, 143, 227–241.

1201 Sisco, M. R. (2021). The effects of weather experiences on climate change attitudes and
1202 behaviors. *Current Opinion in Environmental Sustainability*, 52, 111–117.

1203 Smirnov, O., & Hsieh, P.-H. (2022). Covid-19, climate change, and the finite pool of worry
1204 in 2019 to 2021 twitter discussions. *Proceedings of the National Academy of
1205 Sciences*, 119(43), e2210988119.

1206 Smith, N., & Leiserowitz, A. (2014). The role of emotion in global warming policy support
1207 and opposition. *Risk Analysis*, 34(5), 937–948. <https://doi.org/10.1111/risa.12140>

1208 Spence, A., Poortinga, W., Butler, C., & Pidgeon, N. F. (2011). Perceptions of climate
1209 change and willingness to save energy related to flood experience. *Nature climate
1210 change*, 1(1), 46–49.

1211 Spence, A., Poortinga, W., & Pidgeon, N. (2012). The psychological distance of climate
1212 change. *Risk Analysis: An International Journal*, 32(6), 957–972.

1213 Stephenson, W. (1986). Protoconcursus: The concourse theory of communication. *Operant
1214 Subjectivity*, 9(2), 37–58.

1215 Stoddart, M. C., Ramos, H., Foster, K., & Ylä-Anttila, T. (2023). Competing crises? media
1216 coverage and framing of climate change during the covid-19 pandemic.
1217 *Environmental Communication*, 17(3), 276–292.

1218 Taylor, A., de Bruin, W. B., & Dessai, S. (2014). Climate change beliefs and perceptions of
1219 weather-related changes in the united kingdom. *Risk Analysis*, 34(11), 1995–2004.

1220 The Royal Commission into National Natural Disaster Arrangements. (2020). *Royal
1221 Commission into National Natural Disaster Arrangements Report* (tech. rep.).
1222 Commonwealth of Australia.

1223 Tsai, M.-H., & Li, N. P. (2023). Trait self-control, emotions, and openness to alternative
1224 viewpoints. *Current Research in Behavioral Sciences*, 5, 100131.

1225 van Valkengoed, A. M., Steg, L., & Perlaviciute, G. (2023). The psychological distance of
1226 climate change is overestimated. *One Earth*, 6(4), 362–391.

1227 van der Linden, S. (2014). On the relationship between personal experience, affect and risk
1228 perception: The case of climate change. *European journal of social psychology*, 44(5),
1229 430–440.

1230 van der Linden, S. (2015). The social-psychological determinants of climate change risk
1231 perceptions: Towards a comprehensive model. *Journal of Environmental Psychology*,
1232 41, 112–124.

1233 van der Linden, S., Maibach, E., & Leiserowitz, A. (2015). Improving public engagement
1234 with climate change: Five “best practice” insights from psychological science.
1235 *Perspectives on Psychological Science*, 10(6), 758–763.

1236 van Oldenborgh, G. J., Krikken, F., Lewis, S., Leach, N. J., Lehner, F., Saunders, K. R.,
1237 van Weele, M., Haustein, K., Li, S., Wallom, D., Sparrow, S., Arrighi, J.,
1238 Singh, R. K., van Aalst, M. K., Philip, S. Y., Vautard, R., & Otto, F. E. L. (2021).
1239 Attribution of the Australian bushfire risk to anthropogenic climate change. *Natural
1240 Hazards and Earth System Sciences*, 21(3), 941–960.
1241 <https://doi.org/10.5194/nhess-21-941-2021>

1242 Venables, W. N., & Ripley, B. D. (2002). *Modern applied statistics with s* (Fourth) [ISBN
1243 0-387-95457-0]. Springer. <https://www.stats.ox.ac.uk/pub/MASS4/>

1244 Wang, S., Hurlstone, M. J., Leviston, Z., Walker, I., & Lawrence, C. (2019). Climate
1245 change from a distance: An analysis of construal level and psychological distance
1246 from climate change. *Frontiers in psychology*, 10, 230.

1247 Wang, S., Hurlstone, M. J., Leviston, Z., Walker, I., & Lawrence, C. (2021). Construal-level
1248 theory and psychological distancing: Implications for grand environmental
1249 challenges. *One Earth*, 4(4), 482–486.

1250 Wang, S., Leviston, Z., Hurlstone, M., Lawrence, C., & Walker, I. (2018). Emotions predict
1251 policy support: Why it matters how people feel about climate change. *Global
1252 Environmental Change*, 50, 25–40.

1253 Weber, D., Falzon, L., Mitchell, L., & Nasim, M. (2022). Promoting and countering
1254 misinformation during australia's 2019–2020 bushfires: A case study of polarisation.
1255 *Social Network Analysis and Mining*, 12(1), 64.

1256 Weber, D., Nasim, M., Falzon, L., & Mitchell, L. (2020). #ArsonEmergency and
1257 Australia's "Black Summer": Polarisation and Misinformation on Social Media. In
1258 M. van Duijn, M. Preuss, V. Spaiser, F. Takes, & S. Verberne (Eds.),
1259 *Disinformation Open Online Media* (pp. 159–173). Springer International
1260 Publishing. https://doi.org/10.1007/978-3-030-61841-4_11

1261 Weber, E. U. (2006). Experience-based and description-based perceptions of long-term risk:
1262 Why global warming does not scare us (yet). *Climatic change*, 77(1-2), 103–120.

1263 Weber, E. U. (2010). What shapes perceptions of climate change? *Wiley Interdisciplinary
1264 Reviews: Climate Change*, 1(3), 332–342.

1265 Whitmarsh, L. (2008). Are flood victims more concerned about climate change than other
1266 people? the role of direct experience in risk perception and behavioural response.
1267 *Journal of risk research*, 11(3), 351–374.

1268 Wong-Parodi, G., & Rubin, N. B. (2022). Exploring how climate change subjective
1269 attribution, personal experience with extremes, concern, and subjective knowledge
1270 relate to pro-environmental attitudes and behavioral intentions in the united states.
1271 *Journal of Environmental Psychology*, 79, 101728.

1272 World Weather Attribution Consortium. (2020, January). *Attribution of the australian
1273 bushfire risk to anthropogenic climate change*.
1274 <https://www.worldweatherattribution.org/bushfires-in-australia-2019-2020/>

1275 Xia, Z., Ye, J., Zhou, Y., Howe, P. D., Xu, M., Tan, X., Tian, X., & Zhang, C. (2022). A
1276 meta-analysis of the relationship between climate change experience and climate
1277 change perception. *Environmental Research Communications*, 4(10), 105005.

1278 Zanocco, C., Boudet, H., Nilson, R., & Flora, J. (2019). Personal harm and support for
1279 climate change mitigation policies: Evidence from 10 us communities impacted by
1280 extreme weather. *Global Environmental Change*, 59, 101984.

1281 Zanocco, C., Boudet, H., Nilson, R., Satein, H., Whitley, H., & Flora, J. (2018). Place,
1282 proximity, and perceived harm: Extreme weather events and views about climate
1283 change. *Climatic Change*, 149, 349–365.

Table 1*Summary of auxiliary psychological measures.*

Psychological characteristic	Items	Cronbach's α	Range	Example item	Reference
Climate change cognition and affect					
Knowledge Volume	1	-	1 to 4	How much do you feel you know about climate change?	Malka et al. (2009)
Perceptions of Carbon Emission	7	0.92	1 to 7	Please indicate to what extent each of the following is a cause of climate change, to the best of your knowledge: people driving their cars	Andreotta et al. (2022)
Causes					
Perceptions of Environmental Harm	4	0.87	1 to 7	Please indicate to what extent each of the following is a cause of climate change, to the best of your knowledge: air pollution from toxic chemicals	Andreotta et al. (2022)
Causes					
Perceptions of Natural Causes	2	0.79	1 to 7	Please indicate to what extent each of the following is a cause of climate change, to the best of your knowledge: volcanic eruptions	Andreotta et al. (2022)
Perceived Personal Consequences	3	0.87	1 to 7	Please rate for each of the following how likely it is as a consequence of climate change by the year 2050: food shortages where you live	Bostrom et al. (2012)
Perceived Societal Consequences	8	0.96	1 to 7	Please rate for each of the following how likely it is as a consequence of climate change by the year 2050: food shortages in many parts of the world	Bostrom et al. (2012)
Perceived Human Contribution	1	-	1 to 7	How likely do you think it is that human actions have changed global climate?	Bostrom et al. (2012)
Perceived Effectiveness of Carbon Policies	3	0.75	1 to 7	Please rate for each step what effect you think it would have on climate change: requiring cars and trucks to have higher fuel efficiency (1 = Reduce or Stop Climate Change, 4 = Neither Reduce nor Increase, 7 = Increase Climate Change)	Bostrom et al. (2012)

(continued)

Psychological characteristic	Items	Cronbach's α	Range	Example item	Reference
Perceived Effectiveness of Engineering Policies	3	0.42	1 to 7	Please rate for each step what effect you think it would have on climate change: putting more dust in the atmosphere (1 = Reduce or Stop Climate Change, 4 = Neither Reduce nor Increase, 7 = Increase Climate Change)	Bostrom et al. (2012)
Perceived Effectiveness of Green Policies	5	0.91	1 to 7	Please rate for each step what effect you think it would have on climate change: planting trees (1 = Reduce or Stop Climate Change, 4 = Neither Reduce nor Increase, 7 = Increase Climate Change)	Bostrom et al. (2012)
Epistemic Scepticism	8	0.91	1 to 5	Climate change is just a natural fluctuation in Earth's temperatures	Capstick and Pidgeon (2014)
Response Scepticism	7	0.89	1 to 5	There is no point in me doing anything about climate change because no-one else is	Capstick and Pidgeon (2014)
Worry about Climate Change	1	-	1 to 4	How strongly do you feel worry when you think about the issue of climate change?	Smith and Leiserowitz (2014)
Cognitive style					
Orientation to Future Goals	4	0.72	1 to 5	I consider how things might be in the future	Enzler (2015)
Orientation to Immediate Goals	5	0.86	1 to 5	I mainly act to satisfy my immediate concerns, figuring the future will take care of itself	Enzler (2015)
Conspiracist Ideation	6	0.90	1 to 5	The Apollo moon landings never happened and were staged in a Hollywood film studio	Lewandowsky et al. (2013)
Need for Cognition	6	0.79	1 to 5	I would prefer complex to simple problems	Lins de Holanda Coelho et al. (2018)
Ideology, worldviews, and values					
Environment-as-Ductile Worldview	6	0.81	1 to 5	If the balance of the natural environment is upset the whole system will collapse	Price et al. (2014)
Environment-as-Elastic Worldview	6	0.85	1 to 5	The natural environment is capable of recovering from any damage humans may cause	Price et al. (2014)

(continued)

Psychological characteristic	Items	Cronbach's α	Range	Example item	Reference
Political Ideology	1	-	1 to 7	Please indicate the extent to which you identify yourself as - politically left-wing or right-wing (1 = Very Left-Wing, 7 = Very Right-Wing)	-
System Justification	8	0.85	1 to 9	Everyone has a fair shot at wealth and happiness	Kay and Jost (2003)
Conservation Values	10	0.32	-2.94 to 5.54	Please, rate the importance of the following values as a life-guiding principle for you: CONFORMITY (obedience, honouring parents and elders, self-discipline, politeness)	Lindeman and Verkasalo (2005)
Self-Transcendence Values	10	0.55	-4.84 to 2.52	Please, rate the importance of the following values as a life-guiding principle for you: BENEVOLENCE (helpfulness, honesty, forgiveness, loyalty, responsibility)	Lindeman and Verkasalo (2005)
Personality					
Agreeableness	2	0.27	1 to 5	I see myself as someone who is generally trusting	Rammstedt and John (2007)
Conscientiousness	2	0.53	1 to 5	I see myself as someone who does a thorough job	Rammstedt and John (2007)
Extraversion	2	0.53	1 to 5	I see myself as someone who is outgoing, sociable	Rammstedt and John (2007)
Neuroticism	2	0.62	1 to 5	I see myself as someone who gets nervous easily	Rammstedt and John (2007)
Openness	2	0.14	1 to 5	I see myself as someone who has an active imagination	Rammstedt and John (2007)

Note:

Conservation and Self-Transcendence Value scores were a weighted average of ten items (rated along a nine-point scale). Table reproduced with updated Cronbach's α from Andreotta et al. (2022), under the Creative Commons license (CC BY 4.0).

Table 2

Effect of psychological characteristics on segment membership, as estimated by a multinomial logistic ridge regression for Studies 1 and 3.

Predictors	Acceptors		Fencesitters		Sceptics	
	Study 1	Study 3	Study 1	Study 3	Study 1	Study 3
Intercept						
	+1.64 [^] [1.64, 2.18]	+1.66 [^] [1.44, 2.09]	+0.56 [^] [0.44, 0.99]	+1.03 [^] [0.71, 1.32]	-2.20 [^] [-3.06, -2.19]	-2.69 [^] [-3.22, -2.36]
Climate change cognition and affect						
Epistemic Scepticism	-0.33 [^] [-0.59, -0.26]	-0.46 [^] [-0.72, -0.25]	+0.11 [-0.05, 0.30]	+0.13 [-0.08, 0.39]	+0.23 [^] [0.16, 0.43]	+0.33 [^] [0.19, 0.46]
Worry about Climate Change	+0.31 [^] [0.23, 0.60]	+0.13 [-0.09, 0.38]	-0.06 [-0.25, 0.11]	+0.10 [-0.12, 0.36]	-0.25 [^] [-0.50, -0.19]	-0.23 [^] [-0.44, -0.07]
Response Scepticism	-0.29 [^] [-0.55, -0.19]	-0.55 [^] [-0.75, -0.37]	+0.08 [-0.09, 0.28]	+0.34 [^] [0.14, 0.56]	+0.21 [^] [0.15, 0.40]	+0.21 [^] [0.09, 0.35]
Perceived Human Contribution	+0.20 [^] [0.08, 0.41]	+0.27 [^] [0.12, 0.51]	+0.12 [-0.02, 0.35]	-0.06 [-0.29, 0.16]	-0.32 [^] [-0.59, -0.23]	-0.22 [^] [-0.42, -0.07]
Perceived Societal Consequences	+0.19 [^] [0.06, 0.39]	+0.11 [-0.08, 0.38]	-0.09 [-0.30, 0.05]	+0.06 [-0.21, 0.25]	-0.10 [-0.23, 0.04]	-0.16 [^] [-0.33, -0.02]
Perceptions of Environmental Harm Causes	+0.08 [-0.09, 0.26]	+0.04 [-0.18, 0.24]	+0.08 [-0.08, 0.28]	+0.19 [0.00, 0.43]	-0.16 [^] [-0.32, -0.05]	-0.22 [^] [-0.37, -0.10]
Knowledge Volume	-0.10 [-0.34, 0.01]	-0.05 [-0.25, 0.13]	-0.06 [-0.24, 0.10]	-0.01 [-0.22, 0.19]	+0.15 [^] [0.04, 0.43]	+0.06 [-0.11, 0.26]
Perceptions of Carbon Emission Causes	+0.15 [^] [0.00, 0.35]	+0.15 [-0.02, 0.32]	+0.04 [-0.11, 0.23]	+0.29 [^] [0.09, 0.49]	-0.19 [^] [-0.36, -0.11]	-0.44 [^] [-0.59, -0.29]
Perceived Effectiveness of Engineering Policies	-0.13 [^] [-0.36, -0.01]	+0.09 [-0.11, 0.31]	+0.14 [^] [0.01, 0.36]	-0.10 [-0.31, 0.11]	-0.01 [-0.14, 0.15]	+0.01 [-0.15, 0.16]
Perceived Personal Consequences	+0.12 [-0.03, 0.30]	+0.12 [-0.09, 0.36]	-0.02 [-0.19, 0.14]	-0.09 [-0.31, 0.15]	-0.10 [-0.23, 0.02]	-0.03 [-0.21, 0.11]
Perceived Effectiveness of Carbon Policies	+0.11 [^] [-0.03, 0.35]	-0.13 [-0.34, 0.09]	-0.03 [-0.23, 0.15]	+0.17 [-0.07, 0.36]	-0.08 [-0.27, 0.02]	-0.03 [-0.16, 0.13]
Perceived Effectiveness of Green Policies	+0.10 [-0.02, 0.30]	-0.04 [-0.24, 0.17]	-0.04 [-0.20, 0.14]	+0.10 [-0.12, 0.31]	-0.06 [-0.27, 0.05]	-0.06 [-0.20, 0.08]
Perceptions of Natural Causes	-0.08 [-0.26, 0.08]	-0.15 [-0.40, 0.05]	+0.05 [-0.10, 0.24]	+0.10 [-0.12, 0.36]	+0.02 [-0.15, 0.20]	+0.05 [-0.16, 0.25]
Cognitive style						
Orientation to Future Goals	+0.05 [-0.11, 0.25]	+0.21 [0.00, 0.38]	+0.06 [-0.10, 0.26]	+0.10 [-0.09, 0.30]	-0.11 [-0.33, 0.04]	-0.31 [^] [-0.47, -0.11]
Conspiracist Ideation	-0.15 [^] [-0.36, -0.02]	-0.49 [^] [-0.70, -0.32]	+0.15 [^] [0.02, 0.36]	+0.33 [^] [0.15, 0.55]	+0.00 [-0.18, 0.17]	+0.16 [-0.02, 0.34]
Need for Cognition	-0.12 [-0.32, 0.01]	-0.07 [-0.25, 0.15]	+0.01 [-0.15, 0.18]	-0.02 [-0.23, 0.19]	+0.10 [-0.03, 0.31]	+0.09 [-0.12, 0.27]
Orientation to Immediate Goals	+0.02 [-0.12, 0.25]	-0.16 [-0.42, 0.00]	0.00 [-0.20, 0.17]	+0.15 [-0.04, 0.41]	-0.02 [-0.21, 0.10]	+0.02 [-0.18, 0.21]

(continued)

Predictors	Acceptors		Fencesitters		Sceptics	
	Study 1	Study 3	Study 1	Study 3	Study 1	Study 3
Ideology, worldviews, and values						
Environment-as-Ductile Worldview	+0.18 [-0.01, 0.44]	+0.40[^] [0.23, 0.62]	-0.11 [-0.36, 0.05]	-0.21[^] [-0.43, -0.01]	-0.07 [-0.21, 0.10]	-0.19[^] [-0.36, -0.04]
Conservation Values	-0.11 [-0.32, 0.02]	-0.26[^] [-0.46, -0.06]	+0.01 [-0.17, 0.18]	-0.02 [-0.22, 0.22]	+0.11 [-0.05, 0.32]	+0.27[^] [0.06, 0.45]
Environment-as-Elastic Worldview	-0.20[^] [-0.43, -0.05]	-0.37[^] [-0.58, -0.20]	+0.05 [-0.15, 0.23]	+0.07 [-0.12, 0.33]	+0.15[^] [0.03, 0.38]	+0.30[^] [0.12, 0.46]
System Justification	+0.04 [-0.12, 0.25]	+0.20[^] [0.04, 0.39]	+0.06 [-0.12, 0.23]	-0.23[^] [-0.44, -0.04]	-0.09 [-0.30, 0.07]	+0.03 [-0.16, 0.22]
Self-Transcendence Values	+0.04 [-0.10, 0.21]	+0.17 [-0.04, 0.36]	-0.10 [-0.28, 0.05]	+0.02 [-0.20, 0.21]	+0.06 [-0.12, 0.24]	-0.19[^] [-0.33, 0.00]
Political Ideology	-0.18[^] [-0.41, -0.04]	-0.10 [-0.35, 0.12]	+0.03 [-0.17, 0.19]	-0.16 [-0.38, 0.06]	+0.16[^] [0.02, 0.40]	+0.26[^] [0.09, 0.47]
Personality						
Extraversion	-0.01 [-0.15, 0.14]	+0.03 [-0.21, 0.22]	+0.03 [-0.11, 0.19]	+0.23[^] [0.04, 0.45]	-0.02 [-0.18, 0.11]	-0.26[^] [-0.43, -0.07]
Conscientiousness	+0.03 [-0.09, 0.20]	-0.14 [-0.33, 0.01]	-0.06 [-0.21, 0.09]	+0.19[^] [0.01, 0.39]	+0.03 [-0.15, 0.16]	-0.05 [-0.19, 0.11]
Neuroticism	+0.11 [-0.01, 0.30]	+0.03 [-0.15, 0.22]	-0.02 [-0.17, 0.14]	-0.08 [-0.30, 0.10]	-0.09 [-0.29, 0.01]	+0.05 [-0.09, 0.23]
Agreeableness	+0.04 [-0.11, 0.20]	+0.01 [-0.18, 0.24]	+0.02 [-0.13, 0.17]	-0.03 [-0.27, 0.16]	-0.06 [-0.21, 0.10]	+0.03 [-0.18, 0.23]
Openness	0.00 [-0.16, 0.14]	+0.01 [-0.18, 0.23]	-0.07 [-0.24, 0.06]	0.00 [-0.22, 0.19]	+0.07 [-0.05, 0.25]	-0.01 [-0.22, 0.17]

Note:

Square brackets indicate 95% confidence intervals, estimated using bootstrapping with 10,000 samples. Coefficients with confidence intervals that do not include zero are marked with a caret (^) and are bolded.

Table 3*Sample characteristics and materials for each of the three studies.*

Characteristics	Study		
	1	2	3
Time	Before peak bushfire severity	After peak bushfire severity	After peak bushfire severity
Data collection dates			
Start	24-Sep-2019	25-Feb-2020	13-Mar-2020
End	09-Nov-2019	02-Mar-2020	26-Mar-2020
Sample characteristics			
<i>n</i>	435	413	213
Mean age in years (<i>SD</i>)	46.71 (17.77)	46.82 (18.04)	47.13 (17.29)
Number of women in sample (%)	219 (50.34%)	198 (47.94%)	103 (48.36%)
Materials			
Q-sort task	✓	✓	✓
Auxiliary psychological scales	✓	✗	✓
Fire Perception Scale	✗	✗	✓
Change in policy items	✗	✗	✓

Table 4

Difference in means of climate change cognition and affect characteristics between Study 1 and Study 3.

Psychological characteristics	$M_{Study\ 3} - M_{Study\ 1}$				
	Estimate	95% CI	t	p	$p_{adjusted}$
Perceptions of Natural Causes	0.39	[0.13, 0.65]	2.95	.003	.04*
Response Scepticism	0.19	[0.03, 0.35]	2.29	.022	.27
Perceived Effectiveness of Green Policies	-0.20	[-0.45, 0.05]	-1.60	.110	1.00
Worry about Climate Change	-0.11	[-0.28, 0.05]	-1.35	.178	1.00
Perceptions of Carbon Emission Causes	-0.15	[-0.38, 0.08]	-1.29	.197	1.00
Perceived Human Contribution	-0.18	[-0.46, 0.11]	-1.22	.222	1.00
Epistemic Scepticism	0.09	[-0.08, 0.25]	1.04	.300	1.00
Knowledge Volume	0.06	[-0.06, 0.19]	0.99	.325	1.00
Perceived Personal Consequences	0.12	[-0.12, 0.36]	0.97	.331	1.00
Perceptions of Environmental Harm Causes	-0.10	[-0.35, 0.16]	-0.75	.457	1.00
Perceived Effectiveness of Engineering Policies	-0.04	[-0.22, 0.14]	-0.43	.670	1.00
Perceived Effectiveness of Carbon Policies	-0.04	[-0.25, 0.18]	-0.33	.742	1.00
Perceived Societal Consequences	-0.01	[-0.25, 0.22]	-0.11	.914	1.00

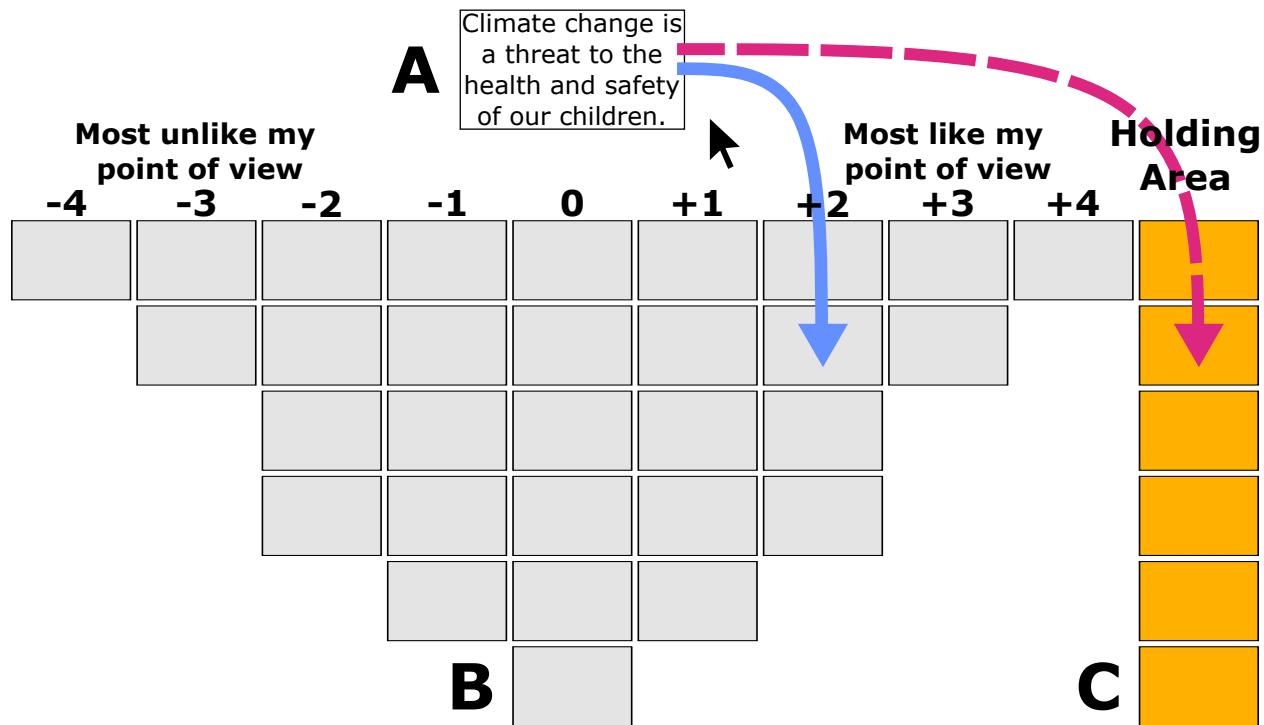
Note:

* $p_{adjusted} < .05$;

p values were adjusted using the Holm (1979) method.

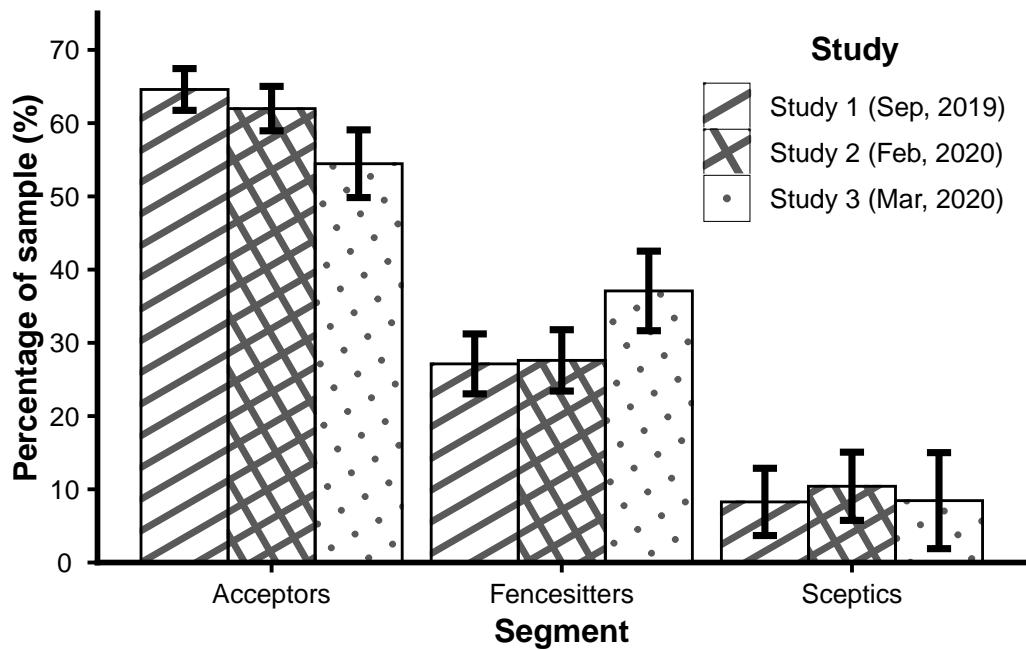
Table 5

Items of the Fire Perception Scale, their loadings onto each factor, their mean score, and their standard deviation.


Item	Factors			Descriptives	
	Climate Processes	Fire Realities	Arson Causes	<i>M</i>	<i>SD</i>
1. Climate change made the 2019-20 Australian bushfires more severe	0.78	0.34	-0.22	3.62	1.40
2. Climate change made the 2019-20 Australian bushfires less likely to occur	0.27	-0.70	0.42	2.19	1.27
3. The 2019-20 Australian bushfires have accelerated climate change	0.84	0.05	-0.14	3.16	1.30
4. The 2019-20 Australian bushfires are severe	0.17	0.86	0.23	4.50	0.79
5. If the government increased taxes on all fossil fuels (e.g., gasoline, oil, coal, kerosene), Australia would be less likely to experience extreme bushfires	0.84	-0.19	0.13	2.55	1.32
6. If we changed our lifestyles to reduce our consumption, Australia would be less likely to experience bushfires	0.86	-0.06	0.08	3.05	1.39
7. Over one hundred arsonists have contributed to the 2019-20 Australian bushfires	-0.10	0.04	0.94	3.47	1.20

Note:

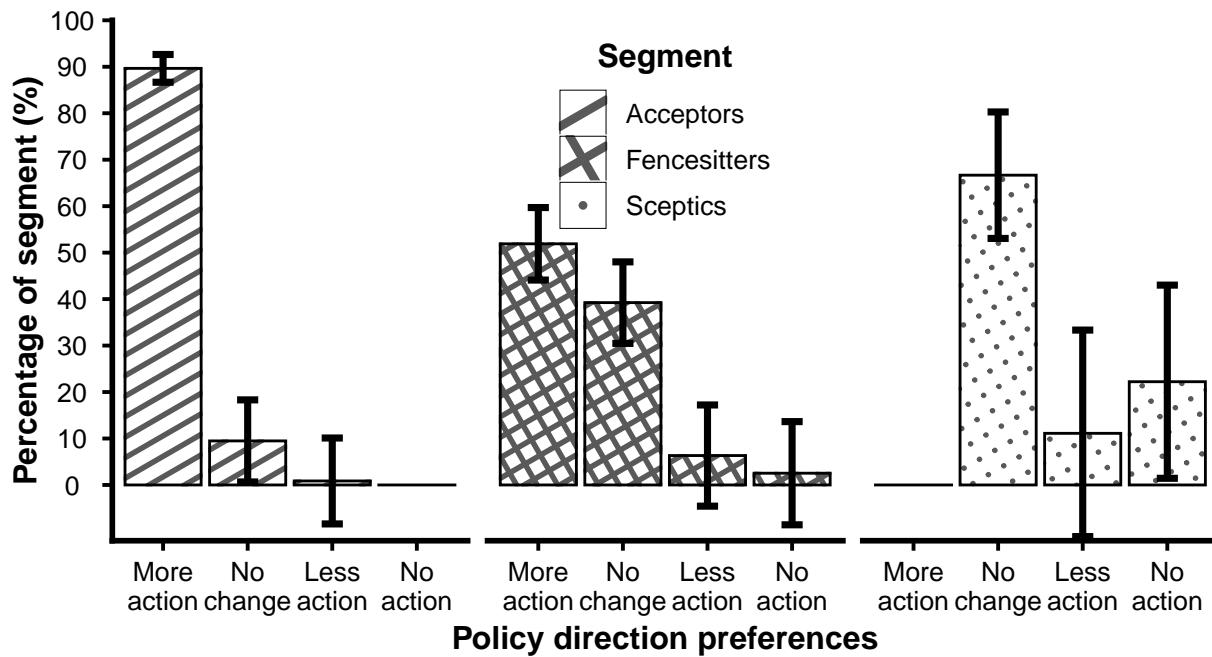
Bolded loadings are greater than .40 in magnitude.


Figure 1

Schematic of the Q-sort task. Participants read through a stack of statements (A) by dragging the top-most statement into the grey box that best corresponded to their point of view (B). As the majority of statements had to be placed around the midpoint, participants could only highlight a few statements that strongly reflect their point of view. Participants could rearrange statements at any time during the task. To facilitate this process, participants could temporarily place statements in the yellow holding area (C). Figure reproduced without changes from Andreotta et al. (2022), under the Creative Commons license (CC BY 4.0).

Figure 2

The segment membership of each study, as a proportion (percentage) of the sample. Error bars indicate one standard error of the proportion.


Figure 3

Mean Fire Perception subscale scores as a function of segment. Error bars indicate one standard error above and below the mean.

Figure 4

Policy direction preferences as a proportion (percentage) of each segment. Error bars indicate one standard error of the proportion.

